
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=pecp21

Journal of Cognitive Psychology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/pecp21

The cognition of programming: logical reasoning,
algebra and vocabulary skills predict programming
performance following an introductory computing
course

Irene L. Graafsma, Serje Robidoux, Lyndsey Nickels, Matthew Roberts, Vince
Polito, Judy D. Zhu & Eva Marinus

To cite this article: Irene L. Graafsma, Serje Robidoux, Lyndsey Nickels, Matthew Roberts,
Vince Polito, Judy D. Zhu & Eva Marinus (2023): The cognition of programming: logical reasoning,
algebra and vocabulary skills predict programming performance following an introductory
computing course, Journal of Cognitive Psychology, DOI: 10.1080/20445911.2023.2166054

To link to this article: https://doi.org/10.1080/20445911.2023.2166054

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 18 Jan 2023.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=pecp21
https://www.tandfonline.com/loi/pecp21
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/20445911.2023.2166054
https://doi.org/10.1080/20445911.2023.2166054
https://www.tandfonline.com/action/authorSubmission?journalCode=pecp21&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=pecp21&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/20445911.2023.2166054
https://www.tandfonline.com/doi/mlt/10.1080/20445911.2023.2166054
http://crossmark.crossref.org/dialog/?doi=10.1080/20445911.2023.2166054&domain=pdf&date_stamp=2023-01-18
http://crossmark.crossref.org/dialog/?doi=10.1080/20445911.2023.2166054&domain=pdf&date_stamp=2023-01-18

The cognition of programming: logical reasoning, algebra and vocabulary
skills predict programming performance following an introductory
computing course
Irene L. Graafsma a,b,c, Serje Robidoux b,d, Lyndsey Nickels b,d, Matthew Roberts e,
Vince Polito b, Judy D. Zhu b and Eva Marinus f

aInternational Doctorate for Experimental Approaches to Language and Brain (IDEALAB), Universities of Groningen (NL), Newcastle
(UK), Potsdam (GE) and Macquarie University, Sydney, (AU), Groningen, Netherlands; bSchool of Psychological Sciences, Macquarie
University, Sydney, Australia; cCentre for Language and Cognition Groningen (CLCG), University of Groningen, NL, Groningen,
Netherlands; dMacquarie University Centre for Reading, Macquarie University, Sydney, Australia; eDepartment of Computing,
Macquarie University, Sydney, Australia; fSchwyz University of Teacher Education, Goldau, Switzerland

ABSTRACT
In the current study we aimed to determine which cognitive skills play a role when
learning to program. We examined five cognitive skills (pattern recognition, algebra,
logical reasoning, grammar learning and vocabulary learning) as predictors of course-
related programming performance and their generalised programming performance
in 282 students in an undergraduate introductory programming course. Initial skills in
algebra, logical reasoning, and vocabulary learning predicted performance for
generalised programming skill, while only logical reasoning skills predicted course-
related programming performance. Structural equation modelling showed support for
a model where the cognitive skills were grouped into a language factor and an
algorithmic/mathematics factor. Of these two factors, only the algorithmic/
mathematics factor was found to predict generalised and course-related programming
skills. Our results suggested that algorithmic/mathematical skills are most relevant
when predicting generalised programming success, but also showed a role for
memory-related language skills.

ARTICLE HISTORY
Received 22 April 2022
Accepted 4 January 2023

KEYWORDS
Programming; coding;
cognitive skills; learning;
programming success

1. Introduction

Programming education has gained major impor-
tance and popularity worldwide. All over the
world initiatives have been taken to teach
people how to programme, focusing on both chil-
dren and adults (European Schoolnet, 2015). In
response to the growing interest in learning to
programme, research in this field has also
increased. Over the last 30 years, most efforts
have come from the computer science education
community, which has largely focused on
different ways of teaching programming and the
goals and motivations of learners (Guzdial, 2016).
However, a smaller group within this community
has also examined programming from a cognitive

perspective. Guzdial and du Boulay (2019) ident-
ified two main streams of research with different
objectives. One stream focuses on whether, and
if so which, cognitive benefits accrue from learn-
ing to programme (e.g. Pea & Kurland, 1984). The
other stream researches which cognitive skills are
important when learning to computer program.
The current study aimed to contribute to this
second stream.

The cognitive skills underpinning learning to pro-
gramme have been examined by earlier studies,
mostly conducted before the mid-1990s (e.g. Pena
& Tirre, 1992; Shute, 1991; Webb, 1985). After this,
interest in programming education temporarily
decreased, arguably because the transition to

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not
altered, transformed, or built upon in any way.

CONTACT Irene L. Graafsma i.l.graafsma@rug.nl irenegraafsma@gmail.com International Doctorate for Experimental Approaches to
Language and Brain (IDEALAB), Universities of Groningen (NL), Newcastle (UK), Potsdam (GE) and Macquarie University, Sydney, (AU), Groningen
9700 AB, Netherlands

JOURNAL OF COGNITIVE PSYCHOLOGY
https://doi.org/10.1080/20445911.2023.2166054

http://crossmark.crossref.org/dialog/?doi=10.1080/20445911.2023.2166054&domain=pdf&date_stamp=2023-01-13
http://orcid.org/0000-0001-7071-1498
http://orcid.org/0000-0002-4581-3297
http://orcid.org/0000-0002-0311-3524
http://orcid.org/0000-0002-2553-6157
http://orcid.org/0000-0003-3242-9074
http://orcid.org/0000-0003-0958-6047
http://orcid.org/0000-0002-3628-0695
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:i.l.graafsma@rug.nl
mailto:irenegraafsma@gmail.com
http://www.tandfonline.com

interface-based software and computers removed
the need for programming for most users (Hacker-
Rank, 2018). Over the last decade, the number of
people who need to learn to programme has been
increasing again. This is partly because the increase
in the use of technology demands more software
engineers (Seegerer et al., 2019). In addition, in
many jobs, there has been a shift from usage to cre-
ation, with a range of professions expected to pro-
gramme their own content, including designing
their own websites or developing data analysis pro-
grammes (Rushkoff, 2012). Overall, currently more
jobs rely on understanding the code that drives tech-
nology than was the case in previous decades.

As a consequence of the increased importance of
programming in professional life, demand for pro-
gramming education has increased. This has
changed the current learning context in three
ways. First, the number of students studying intro-
ductory programming courses has increased, result-
ing in more large-scale lectures and a need for more
independent learning (Marasco et al., 2017). Second,
students with a wider variety of backgrounds and
with different strengths and weaknesses are now
learning to programme. Finally, because of this
diversification, instruction methods have been sim-
plified (Guzdial, 2003; Kelleher & Pausch, 2003)
and programming languages have been developed
to more closely resemble natural languages to
better facilitate learning for beginners (Fedorenko
et al., 2019; O’Regan, 2012; Paulson, 2007). These
changes mean that the skills involved in learning
to programme today may be different from the
skills found in the early studies of over 20 years
ago. The current study therefore examined which
cognitive skills are important in the modern-day
context, focusing on answering the questions:
“Which cognitive skills predict programming
success in current undergraduates?” And, “To what
extent do language and algorithmic /mathematical
skills predict programming success?” Before describ-
ing the current study, we first give a short review of
the results of the earlier studies that focused on cog-
nitive skills in learning to programme.

1.1. Background

Overall, the results of early studies suggest that
problem solving, logical reasoning, algebra and
verbal skills are most strongly related to learning
computer programming regardless of the age of
the learners and specific programming course.

Specifically, Pena and Tirre (1992) found that new
army recruits with better general verbal knowledge
(particularly in the area of general science), reason-
ing skills (such as recognising patterns and con-
ditions in picture series), algebra word problem
solving (particularly problem translation and
problem decomposition), and working memory
capacity showed better programming skill acqui-
sition at the end of a 1.5-hour Pascal tutorial. In
the context of a half-day BASIC programming
course for 11–14-year-olds, Webb (1985) found
that mathematical skill and non-verbal reasoning
predicted knowledge of programming syntax.
Finally, Shute (1991) found that, after a longer (7-
day) programming course (for Pascal), working
memory and word problem solving showed the
highest correlations with learning progress during
the course for high school students. More recent
studies have also shown that general mathematical
skills can predict programming performance (Ben-
nedsen & Caspersen, 2005; Quille & Bergin, 2018,
2019). However, these studies did not look at the
specific cognitive skills that may underlie math-
ematical ability.

These findings give an idea of the cognitive skills
that may be involved when first learning to pro-
gramme. However, the studies also have three
important limitations. First, Pena and Tirre (1992)
and Shute (1991) administered the cognitive tests
either during or after the programming course. This
means that it is possible that the cognitive skills
had been affected by the programming tutorials. In
other words, because of this testing structure, we
cannot disentangle the effects that training may
have had on programming ability from the effects
that training may have had on the cognitive skills
themselves. Second, because the tutorials in all
three studies were relatively short, it remains
unclear whether these cognitive skills are also impor-
tant for learning over a longer time span. Finally, all
three studies used programming scores within the
tutorials as their measure of programming skill.
Although this provides a measure of direct learning
in the course, it does not address whether partici-
pants acquired programming skills that generalise
to different programming settings and languages.
This design also means that the programming
measures from different studies are difficult to
compare, because the tests are different in each
study and are not standardised or validated.

The current study aimed to address these limit-
ations in three ways. First, by administering cognitive

2 I. L. GRAAFSMA ET AL.

skill tests at the very start of the course, before any
programming had been learned, we were able to
determine whether initial cognitive skills at the
start of the course predicted programming perform-
ance at the end. This methodology is in line with
other more recent studies such as Prat et al. (2020)
who also administered cognitive tests before study-
ing programming in an online learning environment.
The current study applied this in the context of class-
room learning. Second, by testing students over a
12-week course, we were able to test how cognitive
skills related to long-term learning in a typical uni-
versity course. Finally, by using both the scores
from the course assessments, as well as scores on
an independent programming test conducted at
the end of the course, we were able to assess both
course-related and generalised programming skills.
Moreover, the use of an independent programming
test also allowed for easier comparison with other
studies that use that same test.

The selection of cognitive skills was based on
three sources. First, we looked at the findings of
the previously discussed studies from the 1980s
and 1990s, which suggested that problem solving,
logical reasoning, algebra and verbal skills corre-
lated with programming ability. Second, we exam-
ined the programming aptitude tests used by IBM
(IBM, 1968) to see which skills experts thought
may be important when learning to programme.
These aptitude tests include elements assessing
pattern recognition, algebra and logical reasoning,
with problem solving as a component of the
different algebra tests. Finally, our theoretical frame-
work was the PGK-hierarchy of the programming
process, which was named after its creators Perre-
net, Groote and Kaasenbrood (Perrenet et al.,
2005) and was further described by Armoni (2013).
This theoretical framework further guided our
research.

The PGK-hierarchy postulates that writing a com-
puter programme to solve a certain problem involves
steps at four different levels. We will explain the four
levels using an example where a programmer is
asked to programme an animation. At the highest
level, the problem level, the programmer considers
the solution the problem demands, and considers
aspects of the problem such as solvability and com-
plexity. In our example, at this level, the programmer
determines what the animation should look like (e.g.
shapes, colours, movements) and how difficult it will
be to design these components. At this level, the pro-
grammer does not yet make specific plans around

how to solve the problem. The second level is the
object level. At this level, an algorithm (a plan detail-
ing the specific steps that must be executed by the
programme) is developed to solve the problem.
Here the programmer specifies which functions or
programming objects should be created, and in
which order, for the animation to be presented as
planned. Here the programmer may decide on
whether to use techniques like loops or recursion
to implement particular sections of the animation.
However, the algorithm is not yet associated with a
specific programming language, which happens in
the third level, the programme level. In our
example, the programmer will now select the
language that best suits the algorithms and look up
the specific functions in that programming language,
andwill write out the codewith the correct terms and
syntax. The lowest level of the PGK-hierarchy is the
execution level, which is the interpretation and
execution of the algorithm by the computer.
Because it does not relate to human cognitive skills,
this level is not relevant to the aims of this study.

From the PGK-hierarchy’s description (Armoni,
2013; Perrenet et al., 2005), the first two levels
seem to rely on algorithmic thinking (deriving a sol-
ution by defining the specific steps necessary to
solve a problem) and mathematical skills. We there-
fore hypothesised that the cognitive skills shown to
be important by the previous literature are related
to these two levels. In particular problem solving,
algebra, logical reasoning, and pattern recognition
are relevant here. The third level of the PGK-hierar-
chy, the programme level, addresses the require-
ment to use specific programming languages. The
relationship between specific language skills and
programming performance has not yet been empiri-
cally tested, but several researchers have argued for
a connection (Fedorenko et al., 2019; Floyd et al.,
2017; Hermans & Aldewereld, 2017; Jacob &
Warschauer, 2018; Siegmund et al., 2014; Vee,
2013; Vogel et al., 2019). In addition, indirect evi-
dence from the second language learning literature
can direct us to relevant language skills that may
predict programming success.

Fedorenko et al. (2019) argued that throughout
its existence, programming has been regarded as
related to natural languages, with some edu-
cational systems including it as part of the
foreign language curriculum. However, over the
last decade the focus has shifted. Programming
has been increasingly described as a Science, Tech-
nology, Engineering, and Mathematics (STEM)

JOURNAL OF COGNITIVE PSYCHOLOGY 3

subject, neglecting the language skills that may
play a role in learning this skill. Hermans and Alde-
wereld (2017) argued against this shift away from
natural languages and emphasised the similarities
between programming and natural language
writing. They maintained that both skills rely on
high-level planning and problem solving at the
start, and on specific structure and style rules at
the later implementation stages. Similarly, a
review by Pandža (2016) argued for more research
on programming from a second language learning
perspective. This is particularly pertinent given that
modern programming languages were initially
designed to resemble natural languages with the
idea that users could rely on their natural language
skills when using a programming language (Fedor-
enko et al., 2019; Paulson, 2007). As a result, it
makes sense to expect that natural language
skills are predictors of the ease of programming
language acquisition.

The second language acquisition literature indi-
cates that successful natural second language learn-
ing relies on phonemic coding ability (to
discriminate and encode foreign sounds), gramma-
tical sensitivity (to recognise functions of words in
sentences), inductive language learning ability (to
infer or induce rules from samples), and memory
and learning (to make and recall associations
between words and phrases in a first and second
language) (Skehan, 1991). Learning a programming
language involves learning the syntax rules and the
specific functions and commands for that language.
This could be considered comparable to learning
grammar and vocabulary in a natural language.
Therefore, we hypothesised that programming
may rely on grammatical sensitivity and inductive
language learning ability for syntax acquisition,
and memory and vocabulary learning for memorisa-
tion of language-specific terms and functions.

1.2. Research questions and hypotheses

The current study examined which cognitive skills
predict programming success in undergraduates.
To achieve this aim, we tested five different cognitive
skills: logical reasoning, pattern recognition, algebra,
which we hypothesised relate to the first and second
levels in the PGK-hierarchy; and vocabulary learning
and grammar learning, which we hypothesised
relate to the third level of the PGK-hierarchy. If this
theory is correct, we would also expect the first
three skills to be related to each other, while

language skills may be relatively independent. Con-
sequently, we tested whether the cognitive skills
selected could be grouped into an algorithmic/math-
ematics factor (pattern recognition, algebra and
logical reasoning) and a language factor(vocabulary
learning and grammar learning). We predicted that
both factors would predict final programming per-
formance and examined the extent to which each
factor contributed to the prediction of programming
success.

2. Methods

2.1. Participants

All 838 students in an “Introductory Programming”
course COMP115 at Macquarie University in the
first semester of 2019 were required to complete
the experimental tasks as part of the first and last
tutorials of the semester. During the semester, par-
ticipants learned to programme in “Processing”, a
simple programming language based on Java that
is specifically intended for beginners to learn to
code in a visual context. Although participation in
the testing sessions was mandatory, only the stu-
dents who gave written consent for their data to
be used for research and who completed both
testing sessions were included (n = 344). Partici-
pants were excluded from analysis if they rated
their own level of English below “Good”, which
was 3 on a 5-point rating scale from 1 (minimal) to
5 (native). Participants were also excluded if, when
probed at the end of the study, they indicated
that they did not seriously attempt the tests, took
notes when this was not allowed, or worked
together. After removing these participants (n =
62), the sample consisted of 282 participants (49
female, 204 male, 2 other, 27 no gender given,
mean age 19.32 years, SD = 3.09). For 129 partici-
pants this was their first programming experience.
The majority of participants were enrolled in Engin-
eering and Information Technology degrees (67%),
but we also included students from science;
business; education; environmental studies; health
and medical sciences; security and intelligence;
media; creative arts and communication; and
society, history and languages. For most students,
the current course was part of their mandatory
study programme. The study received ethical
approval from the Macquarie University Human
Research Ethics Committee (Reference number:
5201800224).

4 I. L. GRAAFSMA ET AL.

2.2. Materials

The results reported here are part of a larger study.
In context of that study we used two different ver-
sions for some of the tests listed below. When two
different versions of a test were used, students
were assigned a version based on the final digits
of their assigned university student numbers
which are assumed to be random, and scores on
the tests were standardised to eliminate any differ-
ences in difficulty across versions. All tests were pre-
sented in a Qualtrics survey (Qualtrics, Provo, UT),
see Section 2.3 “Procedure” for details.

2.2.1. Primary outcome measures
Our primary outcome measure was programming
skill. We assessed this with two different measures:
the Second Computer Science 1 Short (SCS1-Short)
test, to measure generalised programming perform-
ance, and the students’ course grades to measure
course-related programming performance.

Second computer science 1 short (SCS1-short).
This test is based on the Second Computer
Science 1 (SCS1; Parker et al., 2016). The reliability
of the original test was reported by Parker et al. as
a Cronbach’s alpha of .59 (Parker et al., 2016). We
used a computer-based version of this test with
test items split into two parallel versions, as
described in Graafsma et al. (2020). Each version
consisted of 13 questions, and covered the follow-
ing topic areas: basics (i.e. applying simple math-
ematical formulae), conditionals, for loops,
indefinite/while loops, logical operators, arrays,
recursion, function parameters, and function
return values. The division of item topics and
types across versions can be found in the Appendix.
In our validation study (Graafsma et al., 2020), based
on the testing session at the end of the program-
ming course we found a Cronbach’s alpha of .29
for SCS1-Short version 1 and a Cronbach’s alpha of
.55 for SCS1-Short version 2. Reliability indices for
these short versions were low, perhaps indicating
that items on these scales tapped multiple
domains of programming skill. Because SCS1-S
version 1 had a lower reliability than version 2 we
re-ran the analyses in this paper while including
only participants who completed version 2 of the
SCS1-S. With this subset of participants the
findings remained the same. Therefore, the low
reliability of version 1 does not seem to have
affected the results. In this paper, we therefore

included all participants regardless of SCS1-S
version. At the end of the programming course
the average accuracy was 29% correct for Version
1 (3.81 (SD = 1.88) out of 13), and 32% correct
(4.18 (SD = 2.30) out of 13) for Version 2. The
scores on the two versions did not differ signifi-
cantly (t(324.63) =−1.61, p = .11). The SCS1 uses a
pseudocode programming language specifically
developed for this test. Participants were given a
pseudocode guide which they could consult for
information about the syntax and features of the
programming language whilst completing the test.
This guide could be accessed in a separate
browser window by clicking a button in the Qual-
trics survey. Participants were given 30 min to com-
plete as many questions as possible. They could
answer the questions in any order by scrolling
back and forth between the questions in the
online test environment (Figure 1).

Course grades. This outcome measure comprised
the students’ grades on the main course assess-
ments of their course in the programming language
“Processing”. The main assessment was split over
five module tests, each consisting of open questions
where students solved small programming pro-
blems or answered conceptual questions. The five
topics of the modules were: variables & conditionals,
loops, functions, arrays & strings, and programme
design & problem solving. Students were given
three attempts for each module assessment. They
were free to complete these during various exam
sessions throughout the course, or during the
exam session held two weeks after our testing
session with the SCS1-Short. For each module, the
student’s highest score counted towards their final

Figure 1. Example of SCS1-Short question. Note. This figure
presents question 5 of Version 1 of the SCS1-Short.

JOURNAL OF COGNITIVE PSYCHOLOGY 5

grades. For more information see the Unit Guide for
this course which is available in the Cognition of
Coding project on the Open Science Framework
(https://osf.io/8nax4/?view_only=eb0341df544b435
792e436451929e2cd). In the current study we used
each student’s best raw module scores averaged
over the subtopics, and disregarded penalties for
lack of attendance, incomplete work or late sub-
missions. We also excluded grades from a sixth
additional module related to the history of comput-
ing, as it did not measure programming skills. We
chose to use the students’ best scores rather than
first attempt scores, because motivation for first
attempts varied too widely, with some students
using the first attempt just to read through the
questions and evaluate their scope and difficulty
(Figure 2).

2.2.2. Predictor measures
Here we describe the five cognitive skill tests: logical
reasoning, pattern recognition and algebra were
categorised as mathematical/algorithmic skills and
vocabulary learning and grammar learning as
language skills.

Logical reasoning. Logical reasoning was tested
with syllogisms (Handley et al., 2002). Each item
consisted of statements such as “If it is a rectangle
then it is purple. It is a rectangle. It is not purple.”
Participants had to evaluate whether the final state-
ment (“It is not purple.”) followed logically and with
certainty from the previous two statements (“If it is a
rectangle then it is purple. It is a rectangle.”). The
test consisted of 16 items and participants were
given five minutes to complete as many as they
could. We used two parallel versions. Version 1
used the exact items from Handley et al. (2002)
and Version 2 used the same questions but with
different shapes and colours (e.g. “If it is an oval
then it is not black.”).

Pattern recognition. We assessed pattern recog-
nition with “Part 1, Number Series” from the Pro-
gramming Aptitude Test (IBM, 1968) (see footnote
1), which we split into two parallel versions with
alternating even and uneven question numbers in
each version (i.e. Version 1 included items 1,4,5,8
… etc, Version 2 items 2,3,6,7,10, etc.) to ensure
equal difficulty. Each item presented the participant
with a series of six numbers, from which the

participant had to deduce the pattern, and then, fol-
lowing the pattern, select the number that would
come next in the sequence from amongst five
alternatives (e.g. question: 3 6 9 12 15 18, answer
options: 19 20 21 22 23). The test consisted of 13
items and participants had five minutes to complete
as many items as possible.

Algebra. We measured algebra skill with an
adapted version of the “Part 3, Arithmetic Reason-
ing” subtest of the Programming Aptitude Test
(IBM, 1968).1 In the original test the items comprised
mathematical word problems for which participants
had to pick the correct answer from five answer
options consisting of numbers. For the current
study, the test was given a more abstract format
that did not rely as heavily on arithmetic. To do
so, we replaced precise numbers (such as 22
degrees) with abstract variables (such as T1), and
we formulated four multiple choice options as
alternative formulae to solve the problem (one
target and three distractors). Participants were
required to choose the formula that would result
in the correct answer. As an example, we present
item 3 from Version 1:

“The temperature at 1:00 pm was T1 and at 6:30
pm it was T2. Assuming a constant rate of change,
what was the temperature at 4pm?”.

With answer options:

(a) T2−((6.5−1)(T1−T2)/(4−1))
(b) (4−1)(T1−T2)/(6.5−1)
(c) T1−((6.5−1)(T1−T2)/(4−1))
(d) T1−((4−1)(T1−T2)/(6.5−1))

As in the pattern recognition task, we split the
20-item version of the test into two parallel versions
of 10 questions each, by alternating even and
uneven question numbers in each version.

Vocabulary learning.We developed this test based
on the vocabulary learning subtest of the LLAMA
language aptitude test (Rogers et al., 2017). Partici-
pants were instructed to memorise the written
names of 20 creatures displayed in pictures and
were told that they would be tested on them
later. The 20 pictures of novel creatures were
selected from Romanova (2015), and were paired
with 20 novel words (e.g. CEKEL, as shown in
Figure 3) specifically developed for the current

1PAT Use Courtesy of International Business Machines Corporation, © International Business Machines Corporation.

6 I. L. GRAAFSMA ET AL.

https://osf.io/8nax4/?view_only=eb0341df544b435792e436451929e2cd
https://osf.io/8nax4/?view_only=eb0341df544b435792e436451929e2cd

study. All creatures with their names were simul-
taneously presented on the screen, and participants
were given 2.5 min to memorise the pairs without
being allowed to take any notes. Participants were
tested immediately after the learning phase and
again, in a delayed recall test, 30 min later. During
the test phases, all of the creatures’ pictures and
names were displayed on the screen and partici-
pants were given 3.5 min to drag and drop the
names under the corresponding pictures. Two par-
allel versions of this test were used, which consisted
of different pictures and names of novel creatures,

with the length of the names matched across the
two versions.

Grammar learning. We based this test on the
grammar learning subtest of the LLAMA (Rogers
et al., 2017) and on Part 4 of the Pimsleur Language
Aptitude Battery (PLAB) (Pimsleur et al., 2004). The
test consisted of nine sentence-image pairs from
which participants had to deduce the rules of the
grammar of an artificial language. For example,
the sentence “unak-ek ipot-arap” described two
red-circle creatures walking underneath a rectangle
(see Figure 4). Across the training items, participants
could deduce that “unak-ek” meant two creatures
walking under, while “ipot-arap” meant red circles.
Participants were presented with 20 questions
where they were asked to select the grammatically
correct descriptions of new pictures from four
answer options. The test was structured in such a
way that students could scroll back and forth
through all the examples and questions, thus not
having to memorise the vocabulary or grammar.
Students were given eight minutes to complete
the test.

Demographics.We collected information about the
participants’ age, gender, degree major, knowledge
of programming languages, previous programming
experience and level of English. We also asked stu-
dents whether they had completed the tests for
the current study according to the instructions
(e.g. no calculators permitted). Demographics were
used to describe and select the participant sample.

Figure 2. Example of course exam question. Note: This figure presents a question on the topic of “variables and conditions”
from the course exam.

Figure 3. Example of a learning item on the vocabulary
learning test. [To view this figure in color, please see the
online version of this journal.] Note: This figure shows
one of 20 learning items on the vocabulary learning test.

JOURNAL OF COGNITIVE PSYCHOLOGY 7

2.2.3. Tests not used for the current study
As part of a larger research project two more
measures were administered that are not included
in the current study: a sense of agency scale
(Polito et al., 2013), measuring the participant’s feel-
ings of control while programming, and a behaviour
and personality questionnaire that examines autistic
traits in the general population (the Autism Spec-
trum Quotient; Baron-Cohen et al., 2001).

2.3. Procedure

The testing sessions took place during the first and
last tutorials of the programming course and were
led by the regular course tutors. Three per cent
of the participants included in the study com-
pleted the tests at home because they could not
attend the tutorials. Participants were informed
that the aim of study was to find out which skills
are important in learning to computer program.
They were not given any specific information
about the tests or expectations of the study.

Students were given a link to the Qualtrics
surveys in which all tests were presented. The
Qualtrics survey first displayed an information
sheet about the study and gave them the
choice to consent for their data to be used for
research. During each time-limited test partici-
pants saw a countdown of the remaining time
in the corner of the screen. Students were told
that they were allowed to use pen and paper
for all tests except for the vocabulary learning
test.

Students were instructed to complete the tests in
the online Qualtrics system. They were asked to do
so individually at their own pace. All tests had a time
limit that would automatically move the survey on
to the next test once the time limit for a particular
test was reached. To encourage the students to
seriously attempt the tests and not to just skip
through them, the button to move on to the next
test only became available after one minute for
the cognitive tests and after five minutes for the
programming test. For each test, instructions were
provided on a separate page of the survey before
the student could start each test. All instruction
pages were displayed for at least 20 s before the
student could move on to the next page. In the
testing session at the start of the semester, the
order of tests was: (1) vocabulary learning and
direct recall, (2) pattern recognition, (3) algebra, (4)
logical reasoning, (5) vocabulary delayed recall, (6)
grammar learning and (7) demographic question-
naire. During the testing session at the end of the
semester, the students first completed the SCS1-
Short and then the demographics questionnaire.
The testing session at the start of the semester
took approximately one hour, and the session at
the end of the semester took approximately
30 min to complete.

Testing sessions took place in the first and the
last week of the semester course, which were
approximately 12 weeks apart. During the 12
weeks of semester students undertook the required
coursework for the programming course with no
additional tasks related to this study.

Figure 4. Example of a learning item on the grammar learning test. [To view this figure in color, please see the online
version of this journal.] Note: This example from the grammar learning test shows the training sentence on the left that
described the image on the right.

8 I. L. GRAAFSMA ET AL.

2.4. Planned analyses

To answer our first research question of which cog-
nitive skills predicted programming success, we
used regression analyses. To answer the second
question of whether language skills and mathemat-
ical/algorithmic skills each predicted programming
success we used Structural Equation Modelling.
We used both classic Null Hypothesis Significance
Testing (NHST) and Bayesian statistical approaches
for the pre-processing t-tests and for the regression
models. For NHST we adopted α = .05 and con-
sidered results significant at p-values below 0.05.
For the Bayesian analyses, we report the Bayes
factors in favour of the alternative hypothesis
(BF10). Bayes factors between 0 and 0.333 show
support for the null hypothesis, with lower values
showing stronger support. Bayes values between
0.333 and 3 are considered inconclusive. And
Bayes values above 3 show support for the alterna-
tive hypothesis, with higher values showing stron-
ger support (Rouder et al., 2009). Analyses were
primarily conducted in R version 4.0.2 (R Core
Team, 2019). Bayesian statistics were computed in
JASP version 0.10.2 (JASP Team, 2019).

3. Results

3.1. Pre-processing

For the tests that had different versions (pattern rec-
ognition, vocabulary learning, algebra, logical
reasoning and SCS1 programming), t-tests were
used to see whether there were version differences.
For each t-test we only included those participants
who attempted all cognitive tests and would there-
fore be included in the analysis of this paper (n =
245). We found no significant differences between
the different versions of any cognitive tests (all t <
2, p > .10, BF10< 0.333). Nevertheless, to eliminate
any small differences that may not have reached
statistical significance, we computed z-scores for
all cognitive tests to standardise each version
before further analysis.

For the programming test (SCS1-Short), the
difference in performance between the two versions
was not significant (t(233.16) =−1.798, p = .073).
However, a Bayesian t-test indicated that results
were inconclusive (BF10= .652). Ideally, we would
have computed z-scores for this test as well.
However, in a separate validation study (Graafsma
et al., 2020) we tested the quality of each SCS1-
Short version and whether the versions were

parallel. Version 1 was found to be of poorer
quality (possibly more difficult, lower external val-
idity and lower internal-consistency reliability)
than Version 2. To avoid confounding the standar-
dised z-scores with course grades while still elimi-
nating any potential influence of SCS1-Short
version difference or sample difference, we kept
the raw test scores but added the “version” to the
statistical models as a control variable. This
allowed us to control for differences between ver-
sions without assuming that the samples performed
equally well. We also used raw scores for the course
grades.

Exploratory analyses with the demographic data
showed that whether or not the participants had
previous programming experience correlated posi-
tively with programming performance on both
outcome measures (correlation with SCS1-Short: r
= .274, t(241) = 4.412, p = < .001; correlation with
course grades: r = .324, t(239) = 5.296, p < .001). We
therefore included this measure (programming
experience or not) as a control variable in the
regression models.

3.2. Regression models

We used multiple regression to examine which cog-
nitive skills at the start of the semester predicted
final, end of semester, performance on the SCS1
programming test. We entered the scores on the
cognitive tests for pattern recognition, algebra,
logical reasoning, grammar learning and delayed
vocabulary recall as predictors. Since immediate
recall and delayed recall of the vocabulary learning
test were highly correlated (r = .880, p < .001), we
used only delayed recall because this seemed to
be the measure that would better mirror the situ-
ation in the programming course: testing did not
take place immediately after learning. We also
added two control variables: whether or not this
was the participants’ first programming experience,
and version of the SCS1-Short. The results are shown
in Table 1 and Figure 5. Algebra, logical reasoning,
and delayed vocabulary recall were significant pre-
dictors of performance on the SCS1. The Bayes
factors indicated evidence for logical reasoning
and vocabulary learning as predictors, and against
pattern recognition. Bayesian results for algebra
favoured an effect, but not quite strongly enough
to meet the criteria of BF10> 3. The BF10 for
grammar learning skills favoured the null, but
again, not quite strongly enough to meet the

JOURNAL OF COGNITIVE PSYCHOLOGY 9

criteria of BF10< .333. Because the SCS1-Short
Version 1 was of lower quality and slightly harder
than Version 2 (see Table 1, results for SCS1-Short),
we also ran parallel analyses with only the students
that completed the SCS1-Short Version 2. The
pattern of results was the same as for the full
sample so they are not reported separately.

We ran the same multiple regression model with
course grades as the dependent variable. The results
are shown in Table 1 and Figure 5. We found that
only logical reasoning was a significant predictor
of course grade. The pattern of the results of the
Bayesian analysis was similar: there was evidence
for logical reasoning as a predictor of course grade
and the results were inconclusive for the predictive
value of the other cognitive skills.

3.3. Structural equation modelling

We examined the correlations between the cognitive
tests, which are presented in the correlation matrix
shown in Table 2. The language tests (vocabulary
learning and grammar learning) correlated moder-
ately. The mathematical/algorithmic tests (pattern
recognition, algebra, logical reasoning) showed
small, but significant, correlations with each other,
and also showed some small, significant, correlations
with the language tests. In particular, the correlations
between logical reasoning and grammar learning,
logical reasoning and vocabulary learning, and
algebra and grammar learning were comparable in
strength to the correlations between the mathemat-
ical/algorithmic tests themselves.

We used structural equation modelling (SEM)
with chi-squared tests to determine whether a

model with both mathematical (containing logical
reasoning, algebra and pattern recognition) and
language (containing vocabulary and grammar
learning) latent variables better explained the corre-
lation structure between the cognitive skills tests
than a model with a single general latent variable.
Comparison of the two models indicated that the
model with separate latent variables for mathemat-
ical and language skills explained the data better
(X2(1) = 6.424, p = .011). Taking this structure, we
then used separate latent variables for the math-
ematical and language skills to predict program-
ming ability in two different models: one model
with SCS1-Short as the outcome variable, and one
with course grade as the outcome variable. We
used five common goodness of fit measures to
assess how well the models fit the data (Kline,
2005). The chi-squared statistic compares the corre-
lation matrix generated by the model to the actual
correlation matrix. Smaller values indicate less devi-
ation, therefore a good match is indicated by a non-
significant p-value (suggesting that the model’s cor-
relation matrix is “not different” from the observed
matrix). The Root Mean Square Error of Approxi-
mation (RMSEA) and Standardised Root Mean
Squared Residual (SRMR) are similar to the chi-
squared statistic, they also measure how well a
model’s correlation matrix matches the actual corre-
lation matrix. Again, smaller values indicate a better
fit, typically using SRMR < .08 as a cut-off. The Com-
parative Fit Index (CFI) and the Adjusted Goodness-
of-Fit Index (AGFI) both quantify the proportion of
variance explained by the model, with higher
values indicating a better fit. CFI and AGFI values
greater than 0.9 are typically considered a good

Table 1. Predictors of score on the SCS1-short programming test and course grade at the end of the semester.
SCS1-Short Course grade

Type of
variable

β
Estimate

Std
Error

t-
value p-value BF10

β
Estimate

Std
Error

t-
value p-value BF10

First experience Control 1.072 .246 4.351 <.001*** 1249.965+ 10.997 2.138 5.144 <.001*** 30335.880+

Version SCS1-
Short

Control 0.598 .247 2.422 .016* 3.802+ - - - - -

Pattern
recognition

Predictor 0.042 .134 .327 .744 0.262- 1.532 1.128 1.358 .176 0.564

Algebra Predictor 0.300 .135 2.228 .027* 2.513 1.762 1.175 1.500 .135 0.682
Logical reasoning Predictor 0.408 .134 3.040 .003** 17.628+ 3.106 1.181 2.630 .009** 5.937+

Grammar
learning

Predictor 0.122 .149 0.816 .415 0.341 1.750 1.289 1.358 .176 0.564

Vocabulary
delayed recall

Predictor 0.370 .135 2.737 .007** 7.981+ 2.236 1.173 1.907 .058 1.304

Note: Results for the multiple regression models with standardised scores on the cognitive tests at the start of the semester as predictors, and raw
scores on the SCS1-Short and the course grades at the end of the semester as outcome measures. Whether the course was their first program-
ming experience was added as a control variable for both regression models. For the regression model with SCS1-Short as the dependent variable
the version of the SCS1-Short was added at a control variable as well. *indicates p-value below .05, ** indicates p-value below .01, *** indicates p-
value below .001. +indicates BF10 > 3; – indicates BF10 < .333.

10 I. L. GRAAFSMA ET AL.

fit. For the current models, we found good fits for
both the model with SCS1-Short (X2(7, n = 245) =
6.598, p = .472, RMSEA = 0.000, SRMR = .028, CFI =
1.000 and AGFI = .972) and the model with
course grades (X2(7, n = 243) = 4.095, p = .769;
SRMR = .023; RMSEA = 0.000; CFI = 1.000 and
AGFI = .983). Figures 3 and 4 depict the full models
with fitted parameters.

The latent variable for algorithmic/mathematical
thinking significantly predicted scores on the
SCS1-Short programming test (β = .493, SE = .241,
z = 2.044, p = .041), and course grades (® = .542,
SE = .269, z = 2.018, p = .044). However, the latent
variable for language did not predict scores on
either the SCS1-Short programming test (β = .057,
SE = .223, z = .257, p = .797) nor the course grades
(β = .000, SE = .245, z = .001, p = .999). There was
also a strong correlation between the latent vari-
ables for language and algorithmic/mathematical
thinking, both for the model with the SCS1-Short
(β = .736, SE = .108, z = 6.850, p < .001) and for the
model with the course grades (β = .738, SE = .113,

z = 6.507, p < .001). Full tested models with
estimates, including covariance can be seen in
Figures 6 and 7.

4. Discussion

The aim of this study was to examine which cogni-
tive skills predict programming performance fol-
lowing a modern-day programming course.
Specifically, we tested whether five cognitive skills
(logical reasoning, algebra, pattern recognition,
grammar learning and vocabulary learning) pre-
dicted course-related programming performance,
and generalised programming performance at the
end of a 12-week first year university course. We
also examined whether these cognitive skills
could be grouped into an algorithmic/mathemat-
ical factor (comprising pattern recognition,
algebra and logical reasoning) and a language
factor (vocabulary learning and grammar learning),
and whether these factors predicted programming
success.

Figure 5. Partial slopes for each standardised cognitive skill predicting scores on the SCS1-short and course grades. [To view
this figure in color, please see the online version of this journal.] Note: Top row: Partial slopes for each standardised cog-
nitive skill predicting raw scores on the SCS1-Short. Bottom row: Partial slopes for each standardised cognitive skill predict-
ing raw course grades. For the models relating to each plot the other predictors and control variables are held constant. The
shaded area represents a pointwise confidence band based on standard errors. The lines on the horizontal axes show the
exact scores on the cognitive tests for each individual participant.

Table 2. Correlations between cognitive tests.
Pattern recognition Algebra Logical reasoning Grammar learning Vocabulary learning

Pattern recognition 1 0.270* 0.185* 0.197* 0.082
Algebra 0.270* 1 0.254* 0.287* 0.173*
Logical reasoning 0.185* 0.254* 1 0.267* 0.219*
Grammar learning 0.197* 0.287* 0.267* 1 0.369**
Vocabulary learning 0.082 0.173* 0.219* 0.369** 1

Note: Correlations between cognitive tests only including complete observations. *indicates a small correlation, and ** indicates a moderate
correlation.

JOURNAL OF COGNITIVE PSYCHOLOGY 11

There are three findings that need to be dis-
cussed further. First, we found a discrepancy
between predictors of course-related and general-
ised programming performance. Only logical
reasoning predicted course-related programming
performance, whereas logical reasoning, vocabulary
learning and, according to frequentist statistics,
algebra, each predicted generalised programming
performance on a test using a pseudocode pro-
gramming language (SCS1-Short). In both cases,
the skills were predictive even after controlling for

programming experience prior to the start of the
course. Second, based on the results of earlier
studies (Pena & Tirre, 1992; Shute, 1991; Webb,
1985), we expected that all tested cognitive skills
would be predictive of programming performance.
However, we found no predictive value for pattern
recognition and grammar learning. Finally, we
found that the cognitive skills could be grouped
into an algorithmic/mathematical factor consisting
of logical reasoning, algebra and pattern recog-
nition, and a language factor consisting of

Figure 6. Fitted structural model representing the relationship between language and algorithmic/mathematical thinking
and generalised programming skill as measured by the SCS1-short. [To view this figure in color, please see the online version
of this journal.] Note: Blue arrows and * indicate significant estimates at p < .05. Red arrows indicate p > .05. Estimates are
written along their corresponding model lines.

Figure 7. Fitted structural model representing the relationship between language and algorithmic/mathematical thinking and
course-related programming skill asmeasured by the course grades. [To view this figure in color, please see the online version of
this journal.]
Note: Blue arrows and * indicate significant estimates at p < .05. Red arrows indicate p > .05. Estimates arewritten along their correspondingmodel lines.

12 I. L. GRAAFSMA ET AL.

grammar learning and vocabulary learning. Given
the language-like nature of the programming
languages used in the course and in the SCS1-
Short, we expected that both factors (algorithmic/
mathematical and language) would be predictive
of programming skill. The algorithmic/mathematical
factor was indeed predictive of both generalised
programming performance and course-related pro-
gramming performance, but the language factor
was not predictive of either measure of program-
ming performance.

4.1. Generalised versus course-related
programming performance

What explanation could there be for the finding that
generalised programming performance was pre-
dicted by algebra and vocabulary learning while
course-related programming performance was
not? One possibility may lie in the difference in
format between the two types of assessments: the
independent programming test had a strict time
limit, required participants to learn to apply a pseu-
docode programming language on the spot, and
did not allow participants to use a calculator or
the Internet, while for assessments that under-
pinned the course grade, the students were
allowed more time, several attempts, and the use
of external resources. It is thus possible that the
stricter format of the independent programming
test meant that participants needed to rely more
on their memory and learning skills (related to the
vocabulary learning test) and their mathematical
skills (related to the algebra test) when completing
this test compared to the course assessments.

It is also possible that the difference in results
relates to the fact that the course assessments
allowed for multiple attempts. It may be the case,
therefore, that the scores were more dependent
on student persistence and less on pure program-
ming skill. This would result in cognitive skills
having less predictive value for this kind of assess-
ment, which matches our findings. It also explains
the contrast with previous studies that found
several cognitive skills to be predictive of course
exams (Pena & Tirre, 1992; Shute, 1991; Webb,
1985). The programming assessments used by
these older studies were more similar to our inde-
pendent programming test, than to our course
assessment. They had time limits, allowed only
one attempt, and sometimes restricted use of
outside sources. Therefore, it is possible that the

cognitive skills we examined have more predictive
value for more structured and restricted test
formats. Future research can further clarify this by
administering a wider variety of tests with various
structures and levels of restrictions.

4.2. Lack of predictive ability for pattern
recognition

The results of the role of pattern recognition in pro-
gramming are unclear. In the current study, we did
not find pattern recognition to be predictive of pro-
gramming skill. Pena and Tirre (1992), however,
whilst using a similar test of programming, did
find a predictive role for pattern recognition.
Further muddying the waters, Webb (1985) found
predictive ability, but only for the syntax com-
ponent of their programming test—a dimension
that is not included in either our or Pena and
Tirre’s (1992) tests. Thus, it remains unclear which
dimensions of programming skill, if any, rely on
pattern recognition.

We speculate that pattern recognition may be
specifically relevant for programming when the
assessment demands a high level of programming
efficiency. For example, when a piece of code has
to be written in a limited number of lines the pro-
grammer needs tomake efficient use of control struc-
tures, such as loops or functions. To use loops or
functions effectively, the programmer has to recog-
nise patterns in the required steps that can be cap-
tured in these structures, which might be what can
be measured with pattern recognition tasks. Our
independent programming test did not require par-
ticipants to write pieces of code, so it did not
demand efficient code design, and in the course
assessments students were evaluated on the
output/results of the code rather than on its
efficiency. For example, they were not penalised for
using repetitive code instead of a loop or a clever
function. We suggest that the current pattern recog-
nition test might be predictive of programming per-
formance on assessments where programming
efficiency would be evaluated more strictly. Future
studies are required to test this hypothesis.

4.3. Lack of predictive ability for language
skills

Despite the modern trend for programming
languages to more closely resemble natural
languages, we did not find that language skills as

JOURNAL OF COGNITIVE PSYCHOLOGY 13

a cluster, or grammar learning skills specifically, pre-
dicted programming performance. Contradicting
our findings, Prat et al. (2020) found that language
aptitude predicted 17% of variance in programming
skill. However, Prat et al. (2020) measured language
aptitude with the Modern Language Aptitude Test,
which includes tasks that rely heavily on working
memory, for example, memorising lists of auditory
numbers or sound-symbol relationships. Therefore,
it is possible that it is the memory component of
language skills that plays a role when learning to
programme, and hence language skills are only
found to be predictive if there is a strong memory
component to the language test. Looking at the
older studies, only Shute (1991) tested a language-
based memory component with a word span
working memory test and found that this task was
predictive of programming skill. This is also in line
with our findings, where vocabulary learning,
which relies primarily on memory, was found to
be a predictor of programming ability, while
grammar learning, where the examples stayed avail-
able throughout the test, was not. It is possible that
the memorisation aspect of language is most impor-
tant when learning to programme, and that this
aspect was underrepresented in the language
factor of the current study.

We offer two further possible explanations for the
fact that grammar learning was not predictive of pro-
gramming outcomes. Firstly, it is possible that the
way in which programming courses are currently
taught and assessed does not allow for grammar
skills to play a role. Because of the written nature of
programming languages, the format of assignments
and tests usually allows programmers to take time to
look up rules or copy structures from examples. This
diminishes the importance of memorising the syntax
of a specific programming language. We see this
reflected in the way programming is currently
taught. In programming courses, the focus is
usually on problem solving and algorithmic thinking.
Specific programming languages are only used as a
tool to express these other skills and are rarely expli-
citly focussed on (Hermans & Aldewereld, 2017). This
means that in terms of the PGK-hierarchy, education
and assessment focus primarily on the first two levels:
the problem level and the object level. This is also the
case in our measures of programming, where stu-
dents were allowed to use outside sources or a pseu-
docode guide to copy syntax. Neither measure

required students to explicitly evaluate the syntax
rules of the programming language. Researchers
such as Hermans and Aldewereld (2017) have
argued that explicit teaching of programming
languages should be more central to programming
education. If this were to be implemented, it is poss-
ible that grammar learning specifically, and language
skills as awholewould become stronger predictors of
programming skill.

Finally, it is also possible that grammar learning in
a natural language is too distant from syntax learn-
ing in a programming language. Further research
into the linguistic properties of programming
languages is necessary to determine whether there
are fundamental differences between programming
syntax and natural language grammar. This could be
investigated in future studies by comparing both
behavioural and neurological responses to both pro-
gramming languages and natural languages.

4.4. Limitations

In the current study, we used Structural Equation
Modelling to determine to what extent language
and algorithmic/mathematical skills predict pro-
gramming success. One limitation of this method
is that the subdivision of predictor measures was
selected by the researchers. Therefore, we cannot
exclude the possibility that the tests could be
grouped in different ways that would fit the data
more accurately. For example, we saw that logical
reasoning correlated with grammar learning and
vocabulary learning similarly to the extent to
which it correlated with algebra and pattern recog-
nition. It is possible that the tests could have been
grouped in a way that better explained the data if
they were split along declarative/procedural or crys-
talised/fluid axes.2 These would be interesting
avenues for future studies to explore.

Similarly, the SEM analysis cannot show to what
extent language skills might predict programming
skills indirectly. TheSEMmodels showapossible indir-
ect path to programming skill for language skills via
algorithmic/mathematical skills. It is possible that
language skills facilitate performance on mathemat-
ical and algorithmic tasks and thereby influence pro-
gramming performance. To determine whether this
is the case, future studies couldbedesigned to specifi-
cally study these interactions. These further investi-
gations may then shed more light on the

2We would like to thank our reviewer Chantel Prat for this insight.

14 I. L. GRAAFSMA ET AL.

connection between language skills and the general
programmingprocess. In the current study,we specu-
lated that language skills may be most related to the
third level of the PGK hierarchy, as this is the level
where a programming language is implemented.
However, if language skills facilitate algorithmic
skills, they may well be involved in earlier stages of
the programming process.

When interpreting the results of the current study
caution is also advised with regard to the generalisa-
bility. The current study was conducted within a
specific population of university students who had
voluntarily chosen to take this programming
course and had explicitly consented to their data
being used in the current study. The sample of the
current study was predominantly male, and rela-
tively young. This sample is likely to be representa-
tive of most university courses, however, further
research is needed to determine whether the
results found with this population can be general-
ised to the broader population of individuals who
may learn programming. Similarly, while the pro-
gramming measures and teaching formats in the
current studymay be representative of many univer-
sity face-to-face programming courses, they may
differ from other contexts and formats, such as the
online learning environment as used by Prat et al.
(2020), or programming in a professional context.
Results may also differ in contexts where different
programming languages are used. Additionally, the
course assessment in the current study was not a
standardised and validated measure, and should
therefore be interpreted with caution when compar-
ing results to those of other studies.

5. Conclusions

Overall, the current study demonstrates that logical
reasoning is a reliable predictor of generalised and
course-related programming performance, and that
algebra and vocabulary learning skills are successful
predictors of generalised programming performance
at the end of a semester-long undergraduate pro-
gramming course. Our results suggest that algorith-
mic/mathematical skills are most relevant when
predicting generalised programming success, but
also show a role for memory-related language skills.
Although we cannot directly compare the results to
previous studies which did not test generalised pro-
gramming performance, we do see converging evi-
dence for the skills that were found to be predictive
in the studies of the 1980s and 1990s (Pena & Tirre,

1992; Shute, 1991; Webb, 1985). This suggests that
these skills are still relevant in the current context.

Though modern programming languages
resemble natural languages, this study did not find
strong evidence for language skills as predictors of
programming success. We suggest that these
results differ from those of Prat et al. (2020)
because the course and assessments in our study
mostly focused on the problem and object levels
of the PGK-hierarchy and less on the third level
where specific programming languages are used.
Future research will be necessary to understand
the role of language skills in programming and to
further investigate to what extent cognitive skills
that predict programming performance depend on
the format and content of the programming assess-
ment (e.g. time pressure, use of outside sources,
number of attempts and focus on efficiency).

Acknowledgements

We would like to thank the Department of Computing at
Macquarie University for allowing us to conduct this
research in their programming courses and all the stu-
dents who completed the tests. In particular, we would
like to thank the course coordinators, tutors and comput-
ing students for their efforts and support and the comput-
ing interns who participated in pilots, helped with pilot
data analysis and with digitisation of Qualtrics tests. We
would also like to thank IBM for allowing us to use their
programming aptitude tests. Finally, we would like to
thank Miranda Parker and Mark Guzdial for allowing us
to use the SCS1 for this research. Irene Graafsma con-
ducted this as part of a Joint PhD—the International Doc-
torate in Experimental Approaches to Language and Brain
(IDEALAB) awarded by Macquarie University (Australia),
Groningen University (The Netherlands), Potsdam Univer-
sity (Germany) and Newcastle University (United
Kingdom). Funded by a Sandwich project “Natural
versus programming language: Similarities and differ-
ences in underlying cognitive processes”, awarded to
Tops, Bastiaanse, Nickels, and Marinus, and an Inter-
national Macquarie University Research Excellence Scho-
larship (iMQRES).

Disclosure statement

No potential conflict of interest was reported by the
author(s).

Data availability statement

The data that support the findings of this study are openly
available in the Cognition of Coding project in OSF
storage at https://osf.io/8nax4/?view_only=
eb0341df544b435792e436451929e2cd.

JOURNAL OF COGNITIVE PSYCHOLOGY 15

https://osf.io/8nax4/?view_only=eb0341df544b435792e436451929e2cd
https://osf.io/8nax4/?view_only=eb0341df544b435792e436451929e2cd

ORCID

Irene L. Graafsma http://orcid.org/0000-0001-7071-
1498
Serje Robidoux http://orcid.org/0000-0002-4581-3297
Lyndsey Nickels http://orcid.org/0000-0002-0311-3524
Matthew Roberts http://orcid.org/0000-0002-2553-6157
Vince Polito http://orcid.org/0000-0003-3242-9074
Judy D. Zhu http://orcid.org/0000-0003-0958-6047
Eva Marinus http://orcid.org/0000-0002-3628-0695

References

Armoni, M. (2013). On teaching abstraction in CS to
novices. Journal of Computers in Mathematics and
Science Teaching, 32(3), 265–284. https://www.learnte-
chlib.org/primary/p/41271/.

Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J.,
& Clubley, E. (2001). The autism-spectrum quotient
(AQ): Evidence from Asperger syndrome/high-
functioning autism, males and females, scientists
and mathematicians. Journal of Autism and
Developmental Disorders, 31(1), 5–17. https://doi.
org/10.1023/A:1005653411471

Bennedsen, J., & Caspersen, M. E. (2005, October). An
investigation of potential success factors for an intro-
ductory model-driven programming course.
Proceedings of the First International Workshop on
Computing Education Research (pp. 155–163).

European Schoolnet. (2015, November 30). Computing
our future. Computer programming and coding.
Priorities, school curricula and initiatives across
Europe. http://www.eun.org/c/document_library/get_
file?uuid=3596b121-941c-4296-a760-0f4e4795d6fa&gr
oupId=43887.

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U.
(2019). The language of programming: A cognitive per-
spective. Trends in Cognitive Sciences, 23(7), 525–528.
https://doi.org/10.1016/j.tics.2019.04.010

Floyd, B., Santander, T., & Weimer, W. (2017). Decoding the
representation of code in the brain: An fMRI study of
code review and expertise. 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE)
(pp. 175–186). https://doi.org/10.1109/ICSE.2017.24.

Graafsma, I. L., Robidoux, S., Nickels, L., Roberts, M., &
Marinus, E. (2020). Validating two short versions of the
second computer science 1 programming ability test.
Open Science Framework. https://osf.io/exkbm/?view_
only=719e21fee326407cad1b39fbfb866d80.

Guzdial, M. (2003). A media computation course for non-
majors. Proceedings of the 8th Annual Conference on
Innovation and Technology in Computer Science
Education (pp. 104–108). https://doi.org/10.1145/
961511.961542.

Guzdial, M. (2016). Synthesis lectures on human-centered
informatics. Synthesis Lectures on Human-Centered
Informatics, 8(6), 1–165. https://doi.org/10.1007/978-3-
031-02216-6

Guzdial, M., & du Boulay, B. (2019). The history of comput-
ing education research. In S.A. Fischer & A.V. Robins

(Eds.), The Cambridge handbook of computing education
research (pp. 11–39). Cambridge University Press.

Hackerrank. (2018, January 23). Developer skills report.
http://research.hackerrank.com/developer-skills/2018/.

Handley, S. J., Capon, A., Copp, C., & Harper, C. (2002).
Conditional reasoning and the tower of Hanoi: The
role of spatial and verbal working memory. British
Journal of Psychology, 93(4), 501–518. https://doi.org/
10.1348/000712602761381376

Hermans, F., & Aldewereld,M. (2017). Programming iswriting
is programming. Science and Engineering of Programming,
1, 1–8. https://doi.org/10.1145/3079368.3079413.

IBM. (1968). Aptitude test for programmer personnel.
Jacob, S. R., & Warschauer, M. (2018). Computational think-

ing and literacy. Journal of Computer Science Integration,
1(1), https://doi.org/10.26716/jcsi.2018.01.1.1

JASP Team. (2019). JASP (Version 0.10.2) [Computer
software].

Kelleher, C., & Pausch, R. (2003). Lowering the barriers to
programming. ACM Computing.

Kline, R. (2005). Principles and practices of structural
equation modeling (2nd ed.). Guilford Press.

Marasco, E. A., Moshirpour, M., & Moussavi, M. (2017).
Flipping the foundation: A multi-year flipped classroom
study for a large-scale introductory programming
course [Paper presentation]. ASEE Annual Conference
& Exposition, Columbus, Ohio, USA. https://peer.asee.
org/28372.

O’Regan, G. (2012). History of programming languages. In G.
O’Regan (Ed.), A brief history of computing (pp. 121–144).
Springer. https://doi.org/10.1007/978-1-4471-2359-0_9.

Pandža, N. B. (2016). Computer programming as a second
language. In N.B. Pandža (Ed.), Advances in human
factors in cybersecurity (pp. 439–445). Springer.
https://doi.org/10.1007/978-3-319-41932-9_36.

Parker, M. C., Guzdial, M., & Engleman, S. (2016).
Replication, validation, and use of a language indepen-
dent CS1 knowledge assessment. Proceedings of the
2016 ACM Conference on International Computing
Education Research (pp. 93–101). https://doi.org/10.
1145/2960310.2960316.

Paulson, L. D. (2007). Developers shift to dynamic pro-
gramming languages. Computer, 40(2), 12–15. https://
doi.org/10.1109/MC.2007.53

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects
of learning computer programming. New Ideas in
Psychology, 2(2), 137–168. https://doi.org/10.1016/
0732-118X(84)90018-7

Pena, C. M., & Tirre, W. C. (1992). Cognitive factors involved
in the first stage of programming skill acquisition.
Learning and Individual Differences, 4(4), 311–334.
https://doi.org/10.1016/1041-6080(92)90017-9

Perrenet, J., Groote, J. F., & Kaasenbrood, E. (2005). Exploring
students’ understanding of the concept of algorithm:
levels of abstraction. ACM SIGCSE Bulletin, 37(3), 64–68.

Pimsleur, P., Reed, D. J., & Stansfield, C. W. (2004). Pimsleur
language aptitude battery: Manual 2004 edition. Second
Language Testing.

Polito, V., Barnier, A. J., & Woody, E. Z. (2013). Developing
the sense of agency rating scale (SOARS): An empirical
measure of agency disruption in hypnosis.

16 I. L. GRAAFSMA ET AL.

http://orcid.org/0000-0001-7071-1498
http://orcid.org/0000-0001-7071-1498
http://orcid.org/0000-0002-4581-3297
http://orcid.org/0000-0002-0311-3524
http://orcid.org/0000-0002-2553-6157
http://orcid.org/0000-0003-3242-9074
http://orcid.org/0000-0003-0958-6047
http://orcid.org/0000-0002-3628-0695
https://doi.org/10.1023/A:1005653411471
https://doi.org/10.1023/A:1005653411471
http://www.eun.org/c/document_library/get_file?uuid=3596b121-941c-4296-a760-0f4e4795d6fa%26groupId=43887
http://www.eun.org/c/document_library/get_file?uuid=3596b121-941c-4296-a760-0f4e4795d6fa%26groupId=43887
http://www.eun.org/c/document_library/get_file?uuid=3596b121-941c-4296-a760-0f4e4795d6fa%26groupId=43887
https://doi.org/10.1016/j.tics.2019.04.010
https://doi.org/10.1109/ICSE.2017.24
https://osf.io/exkbm/?view_only=719e21fee326407cad1b39fbfb866d80
https://osf.io/exkbm/?view_only=719e21fee326407cad1b39fbfb866d80
https://doi.org/10.1145/961511.961542
https://doi.org/10.1145/961511.961542
https://doi.org/10.1007/978-3-031-02216-6
https://doi.org/10.1007/978-3-031-02216-6
http://research.hackerrank.com/developer-skills/2018/
https://doi.org/10.1348/000712602761381376
https://doi.org/10.1348/000712602761381376
https://doi.org/10.1145/3079368.3079413
https://doi.org/10.26716/jcsi.2018.01.1.1
https://peer.asee.org/28372
https://peer.asee.org/28372
https://doi.org/10.1007/978-1-4471-2359-0_9
https://doi.org/10.1007/978-3-319-41932-9_36
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1109/MC.2007.53
https://doi.org/10.1109/MC.2007.53
https://doi.org/10.1016/0732-118X(84)90018-7
https://doi.org/10.1016/0732-118X(84)90018-7
https://doi.org/10.1016/1041-6080(92)90017-9

Consciousness and Cognition, 22(3), 684–696. https://
doi.org/10.1016/j.concog.2013.04.003

Prat, C. S., Madhyastha, T. M., Mottarella, M. J., & Kuo, C.-H.
(2020). Re-epithelialization and immune cell behaviour
in an ex vivo human skin model. Scientific Reports, 10(1),
1–10. https://doi.org/10.1038/s41598-019-56847-4

Quille, K., & Bergin, S. (2018). Programming: Predicting
student success early in CS1. A re-validation and repli-
cation study. In Proceedings of the 23rd annual ACM
conference on innovation and technology in computer
science education (pp. 15–20). https://doi.org/10.1145/
3197091.3197101.

Quille, K., & Bergin, S. (2019). CS1: how will they do? How
can we help? A decade of research and practice.
Computer Science Education, 29(2-3), 254–282. https://
doi.org/10.1080/08993408.2019.1612679

R Core Team. (2019). R: A language and environment for
statistical computing. R Foundation for Statistical
Computing. URL https://www.R-project.org/.

Rogers, V., Meara, P., Barnett-Legh, T., Curry, C., & Davie, E.
(2017). Examining the LLAMA aptitude tests. Journal of
the European Second Language Association, 1(1), 49–
60. https://doi.org/10.22599/jesla.24.

Romanova, A. (2015). Word class effects on representation
and processing in non-brain damaged speakers and
people with aphasia. [Doctoral dissertation, Macquarie
University]. Macquarie University Library. https://www.
researchonline.mq.edu.au/vital/access/services/Downl
oad/mq:44500/SOURCE1?view=true.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson,
G. (2009). Bayesian t tests for accepting and rejecting the
null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–
237. https://doi.org/10.3758/PBR.16.2.225

Rushkoff. (2012). Code literacy: A 21st-century require-
ment. Edutpia. https://www.edutopia.org/blog/code-
literacy-21st-century-requirement-douglas-rushkoff.

Seegerer, S., Michaeli, T., & Romeike, R. (2019). Informatik für
alle-Eine Analyse von Argumenten und
Argumentationsschemata für das Schulfach Informatik
[Computer science for everyone – an analysis of
arguments and argumentation schemes for the school
subject computer science.]. INFORMATIK 2019: 50 Jahre
Gesellschaft für Informatik–Informatik für Gesellschaft.
https://doi.org/10.18420/inf2019_77.

Shute, V. J. (1991). Who is likely to acquire program-
ming skills? Journal of Educational Computing
Research, 7(1), 1–24. https://doi.org/10.2190/VQJD-
T1YD-5WVB-RYPJ

Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A.,
Leich, T., Saake, G., & Brechmann, N. (2014).
Understanding understanding source code with func-
tional magnetic resonance imaging. In Proceedings of
the 36th International Conference on Software
Engineering (pp. 378–389). https://doi.org/10.1145/
2568225.2568252.

Skehan, P. (1991). Individual differences in second
language learning. Studies in Second Language
Acquisition, 13(2), 275–298. https://doi.org/10.1017/
S0272263100009979

Vee, A. (2013). Understanding computer programming as
a literacy. Literacy in Composition Studies, 1(2), 42–64.
https://doi.org/10.21623/1.1.2.4

Vogel, S., Hoadley, C., Ascenzi-Moreno, L., & Menken, K.
(2019). The role of translanguaging in computational
literacies. Proceedings of the 50th ACM
Technical Symposium on Computer Science Education
(pp. 1164–1170). https://doi.org/10.1145/3287324.
3287368.

Webb, N. M. (1985). Cognitive requirements of learning
computer programming in group and individual set-
tings. AEDS Journal, 18(3), 183–194. https://doi.org/10.
1080/00011037.1985.11008398

JOURNAL OF COGNITIVE PSYCHOLOGY 17

https://doi.org/10.1016/j.concog.2013.04.003
https://doi.org/10.1016/j.concog.2013.04.003
https://doi.org/10.1038/s41598-019-56847-4
https://doi.org/10.1145/3197091.3197101
https://doi.org/10.1145/3197091.3197101
https://doi.org/10.1080/08993408.2019.1612679
https://doi.org/10.1080/08993408.2019.1612679
https://www.R-project.org/
https://doi.org/10.22599/jesla.24
https://www.researchonline.mq.edu.au/vital/access/services/Download/mq:44500/SOURCE1?view=true
https://www.researchonline.mq.edu.au/vital/access/services/Download/mq:44500/SOURCE1?view=true
https://www.researchonline.mq.edu.au/vital/access/services/Download/mq:44500/SOURCE1?view=true
https://doi.org/10.3758/PBR.16.2.225
https://www.edutopia.org/blog/code-literacy-21st-century-requirement-douglas-rushkoff
https://www.edutopia.org/blog/code-literacy-21st-century-requirement-douglas-rushkoff
https://doi.org/10.18420/inf2019_77
https://doi.org/10.2190/VQJD-T1YD-5WVB-RYPJ
https://doi.org/10.2190/VQJD-T1YD-5WVB-RYPJ
https://doi.org/10.1145/2568225.2568252
https://doi.org/10.1145/2568225.2568252
https://doi.org/10.1017/S0272263100009979
https://doi.org/10.1017/S0272263100009979
https://doi.org/10.21623/1.1.2.4
https://doi.org/10.1145/3287324.3287368
https://doi.org/10.1145/3287324.3287368
https://doi.org/10.1080/00011037.1985.11008398
https://doi.org/10.1080/00011037.1985.11008398

Appendix

Items of SCS1-S versions 1 and 2.

SCS1-S version 1 SCS1-S version 2

Question
number
SCS1-S1

Original
question from

SCS1 Topic Type of question

Question
number
SCS1-S2

Original
question from

SCS1 Topic Type of question
1 1 for definitional 1 3 while definitional
2 2 logical

operator
tracing 2 4 arrays definitional

3 5 function
return
values

tracing 3 7 while code completion

4 6 if definitional 4 8 for Tracing
5 9 while tracing 5 10 logical operator definitional
6 12 basics definitional 6 11 function return

values
definitional

7 13 for code completion 7 16 function
parameters

code completion

8 14 recursion definitional 8 19 if tracing
9 17 arrays code completion 9 20 function

parameters
Definitional

10 18 recursion code completion 10 21 if code completion
11 22 arrays tracing 11 23 basics tracing
12 25 basics code completion 12 24 recursion Tracing
13 27 function

parameters
tracing 13 26 logical operator code completion

18 I. L. GRAAFSMA ET AL.

	Abstract
	1. Introduction
	1.1. Background
	1.2. Research questions and hypotheses

	2. Methods
	2.1. Participants
	2.2. Materials
	2.2.1. Primary outcome measures
	Second computer science 1 short (SCS1-short)
	Course grades

	2.2.2. Predictor measures
	Logical reasoning
	Pattern recognition
	Algebra
	Vocabulary learning
	Grammar learning
	Demographics

	2.2.3. Tests not used for the current study

	2.3. Procedure
	2.4. Planned analyses

	3. Results
	3.1. Pre-processing
	3.2. Regression models
	3.3. Structural equation modelling

	4. Discussion
	4.1. Generalised versus course-related programming performance
	4.2. Lack of predictive ability for pattern recognition
	4.3. Lack of predictive ability for language skills
	4.4. Limitations

	5. Conclusions
	Acknowledgements
	Disclosure statement
	Data availability statement
	ORCID
	References
	Appendix
	Items of SCS1-S versions 1 and 2.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.245 841.846]
>> setpagedevice

