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Simple Summary: Understanding the cellular neurobiology of psychedelics is crucial for unlocking
their therapeutic potential and expanding our understanding of consciousness. This review provides
a comprehensive overview of the current state of the cellular neurobiology of psychedelics, shedding
light on the intricate mechanisms through which these compounds exert their profound effects.
Given the significant global burden of mental illness and the limited efficacy of existing therapies, the
renewed interest in these substances, as well as the discovery of new compounds, may represent a
transformative development in the field of biomedical sciences and mental health therapies.

Abstract: Psychedelic substances have gained significant attention in recent years for their potential
therapeutic effects on various psychiatric disorders. This review delves into the intricate cellular
neurobiology of psychedelics, emphasizing their potential therapeutic applications in addressing the
global burden of mental illness. It focuses on contemporary research into the pharmacological and
molecular mechanisms underlying these substances, particularly the role of 5-HT2A receptor signal-
ing and the promotion of plasticity through the TrkB-BDNF pathway. The review also discusses how
psychedelics affect various receptors and pathways and explores their potential as anti-inflammatory
agents. Overall, this research represents a significant development in biomedical sciences with the
potential to transform mental health treatments.

Keywords: psychedelics; 5-HT2A; BDNF; TrkB; serotonergic; psilocybin; LSD; psychedelic therapy;
hallucinogen; neuroplasticity

1. Introduction

Coined by Humphry Osmond in 1956, the term “psychedelic” originates from the
Greek words meaning “mind manifesting” [1]. This term is used to describe the subjective
effects of these substances, highlighting their ability to induce profound experiences and
alter perception.

Psychedelics constitute a class of drugs obtained from specific plants, animals, and
fungi, and they can be categorized into three primary classes based on their chemi-
cal structure: tryptamines, ergolines, and phenethylamines [2,3]. Tryptamines, such as
psilocybin, N, N-dimethyltryptamine (DMT), and 5-methoxy-N,N-dimethyltryptamine
(5-MeO-DMT) are characterized by an indole (aromatic group separated from a basic
amine by a two-carbon linker) and share structural similarities with the neurotransmit-
ter serotonin. Ergolines, such as lysergic acid diethylamide (LSD), are characterized by
the presence of a tetracyclic ergoline ring, and were originally derived from the ergot
fungus [4]. Phenethylamines, such as 2C-B, mescaline, amphetamine analogues—e.g., 2,5-
Dimethoxy-4-iodoamphetamine (DOI) and 2,5-Dimethoxy-4-methylamphetamine (DOM),
and derivatives such as 4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl) phenethylamine (25I-
NBOMe)—are characterized by a benzene ring with an amino group attached through a
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two-carbon chain [3]. In addition to classical psychedelics, there are atypical compounds
like 3,4-Methylenedioxymethamphetamine (MDMA), muscimol, scopolamine, salvinorin
A, ibogaine, nitrous oxide, phencyclidine (PCP), and ketamine that produce similar psycho-
logical effects but work through different mechanisms. These compounds are sometimes
considered psychedelics under a broader definition [4].

Psychedelics have been used by humans for centuries. Historical records indicate that
these substances have been consumed in ancient cultural rituals with the purpose of heal-
ing, attaining altered states of consciousness, and gaining spiritual insights, tracing back to
prehistory [5,6]. The synthesis of mescaline in the early 1900s and the groundbreaking dis-
covery of the classical hallucinogen LSD by Albert Hofmann in 1938 marked the beginning
of Western psychedelic science [7–9]. During the 1950s and 1960s, these substances gained
popularity in therapeutic and psychiatric settings due to their ability to facilitate psychother-
apy [7]. However, in 1970, the U.S. Drug Enforcement Agency classified psychedelics as
Schedule I drugs, which had a profound impact on research in the field [10]. Prior to
their classification, over 1000 clinical studies were published, documenting promising
therapeutic effects of psychedelics in more than 40,000 subjects. [7,11,12]. These studies in-
dicated therapeutic benefits in various conditions such as anxiety and obsessive-compulsive
disorders (OCD), depression, alcohol addiction, and sexual dysfunction, as well as pain
and anxiety relief in patients with terminal cancer [10,13–19]. This regulatory decision
effectively curtailed psychedelic research for approximately 30 years [20].

The advent of advanced neuroimaging techniques in the 1990s, including positron
emission tomography (PET) and functional magnetic resonance imaging (fMRI), played a
pivotal role in enhancing our comprehension of molecular and physiological mechanisms
within the central nervous system [21]. These breakthroughs also sparked a renewed
interest in exploring the effects of psychedelic substances [22]. In the last three decades,
there has been a resurgence in the exploration of psychedelics, reigniting research interest
in their therapeutic potential. This renewed focus has led to anticipated FDA approvals
for the use of psychedelics in treating various conditions, marking a period of exponential
scientific growth in this field [23–25].

In recent years a growing number of clinical trials and studies have been conducted
or are currently underway, investigating the therapeutic potential of psychedelics such
as LSD and psilocybin for various mental health conditions including depression, anx-
iety, cancer-related anxiety disorders, addiction, post-traumatic stress disorder (PTSD),
obsessive-compulsive disorder, terminal illness, stroke, traumatic brain injury (TBI), neu-
rodegenerative disorders, and chronic pain [22,26–41]. In response to this growing interest,
the U.S. Food and Drug Administration recently released a new draft guidance aimed at
emphasizing essential considerations for researchers exploring the use of psychedelic drugs
as potential treatments for medical conditions [42].

Randomized Phase II trials have so far demonstrated significant reductions in symp-
toms and long-lasting benefits following psilocybin-assisted psychotherapy for major
depressive disorder, anxiety, and treatment-resistant depression [43–46]. Remarkably,
even one or two doses of psilocybin have led to rapid and sustained improvements in
mood and perspective, with symptomatic relief lasting for at least 3–12 months [28,45–47].
Furthermore, enduring positive effects and improved well-being following psilocybin
administration have also been observed in healthy individuals. Recent Phase 3 trials inves-
tigating MDMA for PTSD have shown promising results, and hint at a potential paradigm
shift in psychiatry towards utilizing substances with acute psychoactive effects to generate
long-term benefits for psychiatric patients [48].

Understanding the cellular neurobiology underlying these mind-altering substances is
crucial for unraveling their therapeutic potential and expanding our knowledge of conscious-
ness. This review aims to provide a comprehensive overview of the current status of the cellular
neurobiology of psychedelics, shedding light on the intricate mechanisms through which these
compounds exert their profound effects. Given the significant societal and economic burden
associated with mental illness globally [49], the limited efficacy of many existing therapies, and
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the transdiagnostic potential of psychedelics, the renewed interest in these natural substances,
as well as the discovery of new semisynthetic and synthetic compounds, may represent one of
the most transformative advancements in the biomedical sciences.

2. Psychedelics Exert Their Effects on the Brain at Multiple Levels, Engaging in
Intricate and Multifaceted Mechanisms

The impact of psychedelics on the brain can be examined from multiple perspectives,
including molecular/cellular, circuit/network, and overall brain levels, all of which are
inherently interconnected (Figure 1). At the molecular/cellular level, psychedelics stimulate
the serotonin 2A receptor (5-HT2R) along with other serotonin sub-receptors, tropomyosin
receptor kinase B (TrkB), and dopamine receptors [50,51]. Classic psychedelics have been
shown to elevate levels of glutamate and oxytocin [22,52–55], promote the production of
brain-derived neurotrophic factor (BDNF) [51,56,57], stimulate neurogenesis [22,52], and
exhibit anti-inflammatory properties [58]. On a cellular level, psychedelics also induce
an increase in the expression of various genes that encode for the synthesis of a range of
proteins that facilitate neuroplasticity and learning, even following a single dose [59–61].
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Figure 1. Psychedelics exert their effects through various levels of analysis, including the molecu-
lar/cellular, the circuit/network, and the overall brain. The crystal structure of serotonin 2A receptor
in complex with LSD is sourced from the RCSB Protein Data Bank (RCSB PDB) [62]. LSD, lysergic
acid diethylamide; 5-HT2A, serotonin 2A; CSTC, cortico-striato-thalamo-cortical [63]; REBUS, relaxed
beliefs under psychedelics model [64]; CCC, claustro-cortical circuit [65]. Generated using Biorender,
https://biorender.com/, accessed on 4 September 2023.

At the circuit and network levels (Figure 1), both ketamine and serotonergic psychedelics
have been observed to enhance synaptic growth and increase the complexity of dendrites,
consequently leading to a greater number of synapses [66]. This, in turn, results in an
increased connectivity among neurons [67–73].

https://biorender.com/
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The structural and neuroplastic changes induced by psychedelics originate from a
series of processes discussed earlier at the molecular and cellular levels. This review will
shed light on some of these mechanisms. This cascade of network changes has led to
psychedelics being characterized as “psychoplastogens”, substances with the capability to
facilitate rapid neural plasticity both in terms of structure and function [67,74].

At the level of the brain (Figure 1), several distinct and frequently complementary
neuroscientific explanations have been put forth to elucidate the effects of psychedelics and
the mechanisms underlying the psychedelic experience [75,76]. The three most prominent
theories encompass the cortico-striato-thalamo-cortical (CSTC) model [63], the relaxed beliefs
under psychedelics (REBUS) model [64], and the claustro-cortical circuit (CCC) model [65].

The CSTC model proposes that psychedelics, through the stimulation of 5-HT2ARs,
disrupt information processing in the brain by altering the thalamo-cortical gating of external
and internal information to the cortex [63]. This disruption leads to an increased flow of
information or feedforward processing, resulting in various effects, including impaired senso-
rimotor gating, alterations in cognitive functioning, and changes in sensory and somatomotor
cortical regions. This model is substantiated by both behavioral observations of impaired
sensorimotor gating in humans following the administration of psilocybin [77,78], LSD [79]
and ayahuasca [80], and neuroimaging findings demonstrating increased thalamic functional
connectivity and synchronisation of cortical sensory regions in response to LSD [81,82].

The REBUS model suggests that psychedelics reduce the precision of high-level priors
(or expectations and beliefs about the world) while simultaneously increasing the flow of
bottom-up sensory information [64]. This model integrates the entropic brain hypothe-
sis [83] and the free-energy principle, explaining how psychedelics influence brain function
by altering the relative importance of prior beliefs and sensory information. This shift in
signal weighting makes recurrent message transfer within the brain more responsive to
modulation by incoming sensory signals, ultimately leading to increased complexity and
entropy in neuronal dynamics. Preliminary empirical evidence supports this model, demon-
strating that psychedelics like LSD, psilocybin, DMT, ketamine, and ayahuasca enhance
signal diversity and measures of entropy in brain activity [84–88]. While the REBUS model
has influenced the field of psychedelic research as a potential overarching framework, it has
faced criticism both conceptually (such as regarding entropy definition, low- and high-level
brain region demarcation) and methodologically (small sample sizes of the studies and
analytical choices), necessitating further rigorous research for confirmation [75,76].

The CCC model proposes that psychedelics interfere with coordination between
cortical regions and the claustrum by directly activating 5-HT2ARs, which are abundant in
the claustrum [65,89–91]. This coordination plays a crucial role in cognitive control, which
is diminished by the effects of psychedelics [65,91]. This model has substantial support
from neuroimaging studies that have demonstrated that psilocybin significantly disrupts
networks associated with cognitive control and the proper functioning of the claustrum [68].
While the CCC model holds promise in explaining the widespread effects of psychedelics
on various brain networks, it currently lacks specificity in detailing how these changes in
the claustrum affect specific canonical circuits [75]. Advanced imaging techniques, such as
higher field fMRI, will be needed to better understand the flow of information between the
claustrum and other brain regions. Additionally, although reduced cognitive control may
contribute to some psychedelic effects, it appears insufficient to explain all of the varied
acute subjective experiences associated with these substances [75].

The models and levels of analysis presented in Figure 1 include extra-pharmacological
factors, such as social, contextual, and cultural elements, commonly referred to as “set”
(comprising individual beliefs, expectations, and mindset) and “setting” (involving the
environment and socio-historical context). Of particular note, music has consistently
played a pivotal role in guiding and enhancing the therapeutic experience in the history of
psychedelic research, and recent findings emphasize its ability to support processes like
meaning-making, emotional responses, and mental imagery following psychedelic admin-
istration, ultimately contributing to positive clinical outcomes in psychedelic therapy [92].
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3. 5-HT2A Receptor Signaling

Psychedelics have a similar chemical structure to serotonin (5-HT) [93]. Recent studies
using advanced techniques like X-ray diffraction and cryo-electron microscopy have re-
vealed the crystal structures of serotonin receptors when they are bound to psychedelic
substances like LSD, psilocin, and others [62,94]. These studies provide new insights
into how psychedelics work at the molecular level and their potential use in developing
psychedelic-based treatments.

Phenethylamines exhibit a greater level of specificity for 5-HT2A, 5-HT2B, and 5-
HT2C receptors in comparison to tryptamines and ergolines [3,95]. In the past, it was
widely believed that the therapeutic effects of psychedelics were mainly attributed to their
activation of the 5-HT2AR [96–99], but recent research has revealed the involvement of
other receptors in producing these effects [51]. This belief is substantiated by evidence
showing that the particular neural circuits in the central nervous system impacted by
serotonergic psychedelics align with the distribution of serotonin receptors (Figure 2) [100].
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Figure 2. Distribution of serotonin, dopamine, and glutaminergic pathways in the human brain.
Ventromedial prefrontal cortex (vmPFC) in purple; raphe nuclei in blue. Generated using Biorender,
https://biorender.com/, accessed on 4 September 2023.

The occupancy of 5-HT2ARs also exhibits a correlation with the subjective effects induced
by psychedelics and these effects are suppressed by serotonin-2A antagonists [70,100–105]. The
5-HT2ARs are prominently found in pyramidal neurons situated in layer 5 of the neocortex,
the thalamus, and the reticular nucleus, with a significant concentration observed in the
prefrontal cortex (PFC) [104,106–113]. These brain areas are associated with functions
like visual perception and attention, which likely contribute to the broad and diverse
effects of psychedelics on cognitive, perceptual, and emotional processes. However, it
is worth noting that other studies have indicated that the greatest concentration of these
receptors is found in the striate and extrastriate visual cortex [80,104]. This observation
could explain the frequent occurrence of visual hallucinations, a distinctive hallmark of
classic psychedelics. Moreover, a recent study used a whole-brain model of serotonergic
neuromodulation to investigate the entropic effects of 5-HT2AR activation, confirming the
earlier findings of increased entropy and emphasizing that the most significant changes in
entropy occurred in the visuo-occipital regions. Interestingly, this study also revealed that
the overall reorganization of brain activity was more strongly associated with the brain’s
anatomical connectivity than to the density of 5-HT2AR, offering valuable insights into
the mechanisms behind the psychedelic experience and the broader regulation of brain
functions by pharmacological means [114].

The expression of HT2AR is highest in excitatory neurons within the cortex, but it is
also found in inhibitory interneurons. Specifically, in the prefrontal cortex, 5-HT2ARs are
predominantly located on the postsynaptic side [115].

The 5-HT2AR, classified as a Class A G-protein-coupled receptor, is activated by its
natural ligand, 5-HT, acting as an agonist. However, in contrast to 5-HT, psychedelic agonists
targeting this receptor induce profound changes in perception and cognition. These effects
can be explained by the ternary complex model of receptor activity for agonists [116,117]. This

https://biorender.com/
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model suggests that drug molecules can shift the equilibrium between different receptor con-
formations, leading to “bias” in activating either G-protein-dependent or β-arrestin-dependent
signaling pathways (Figure 3) [118–120]. In a recent study, cryo-EM structures of LSD-bound
HTR2B provided snapshots of LSD’s action. These revealed transitions from transducer-free,
partially active states to transducer-coupled, fully active states, highlighting the potential for
biased agonists with functional selectivity, which could be safer and more effective drugs for
specific G-protein-coupled receptors (GPCRs) [121].
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understanding of the activation or inhibition of specific pathways and the precise molecular mecha-
nisms responsible for triggering plasticity in specific neuron types remains incomplete. This figure
illustrates the mechanisms associated with heightened plasticity within these pathways. Psychedelics
(such as LSD, psilocin, and mescaline) bind to TrkB dimers, stabilizing their conformation. Fur-
thermore, they enhance the localization of TrkB dimers within lipid rafts, thereby extending their
signaling via PLCγ1. The BDNF/TrkB signaling pathway (black arrows) initiates with BDNF activat-
ing TrkB, prompting autophosphorylation of tyrosine residues within TrkB’s intracellular C-terminal
domain (specifically Tyr490 and Tyr515), followed by the recruitment of SHC. This, in turn, leads to
the binding of GRB2, which subsequently associates with SOS and GTPase RAS to form a complex,
thereby initiating the ERK cascade. This cascade ultimately results in the activation of the CREB
transcription factor. CREB, in turn, mediates the transcription of genes essential for neuronal survival,
differentiation, BDNF production, neurogenesis, neuroprotection, neurite outgrowth, synaptic plastic-
ity, and myelination. Activation of Tyr515 in TrkB also activates the PI3K signaling pathway through
GAB1 and the SHC/GRB2/SOS complex, subsequently leading to the activation of protein kinase
AKT and CREB. Both Akt and ERK activate mTOR, which is associated with downstream processes
involving dendritic growth, AMPAR expression, and overall neuronal survival. Additionally, the
phosphorylation of TrkB’s Tyr816 residue activates the phospholipase Cγ (PLCγ) pathway, generating
IP3 and DAG. IP3 activates its receptor (IP3R) in the endoplasmic reticulum (ER), causing the release
of calcium (Ca2+) from the ER and activating Ca2+/CaM/CaMKII which in turn activates CREB.
DAG activates PKC, leading to ERK activation and synaptic plasticity. After being released into the
extracellular space, glutamate binds to ionotropic glutamate receptors, including NMDA receptors
(NMDARs) and AMPA receptors (AMPARs), as well as metabotropic glutamate receptors (mGluR1
to mGluR8), located on the membranes of both postsynaptic and presynaptic neurons. Upon binding,
these receptors initiate various responses, such as membrane depolarization, activation of intracel-
lular messenger cascades, modulation of local protein synthesis, and ultimately, gene expression.
The surface expression and function of NMDARs and AMPARs are dynamically regulated through
processes involving protein synthesis, degradation, and receptor trafficking between the postsynaptic
membrane and endosomes. This insertion and removal of postsynaptic receptors provides a mech-
anism for the long-term modulation of synaptic strength [122]. Psychedelic compounds exhibit a
high affinity for 5-HT2R, leading to the activation of G-protein and β-arrestin signaling pathways
(red arrows). Downstream for 5-HT2R activation, these pathways intersect with both PI3K/Akt
and ERK kinases, similar to the BDNF/TrkB signaling pathway. This activation results in enhanced
neural plasticity. A theoretical model illustrating the signaling pathway of DMT through Sig-1R at
MAMs suggests that, at endogenous affinity concentrations (14 µM), DMT binds to Sig-1R, trigger-
ing the dissociation of Sig-1R from BiP. This enables Sig-1R to function as a molecular chaperone
for IP3R, resulting in an increased flow of Ca2+ from the ER into the mitochondria. This, in turn,
activates the TCA cycle and enhances the production of ATP. However, at higher concentrations
(100 µM), DMT induces the translocation of Sig-1Rs from the MAM to the plasma membrane (dashed
inhibitory lines), leading to the inhibition of ion channels. BDNF = brain-derived neurotrophic
factor; TrkB = tropomyosin-related kinase B; LSD = lysergic acid diethylamide; SHC = src homology
domain containing; SOS = son of sevenless; Ras = GTP binding protein; Raf = Ras associated fac-
tor; MEK = MAP/Erk kinase; mTOR = mammalian target of rapamycin; ERK = extracellular signal
regulated kinase; GRB2 = growth factor receptor bound protein 2; GAB1 = GRB-associated binder
1; PLC = phospholipase C γ; IP3 = inositol-1, 4, 5-triphosphate; DAG = diacylglycerol; PI3K = phos-
phatidylinositol 3-kinase; CaMKII = calcium/calmodulin-dependent kinase; CREB = cAMP-calcium
response element binding protein; AMPA = α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid; Sig-1R = sigma-1 receptor; DMT = N,N-dimethyltryptamine; BiP = immunoglobulin protein;
MAMs = mitochondria-associated ER membrane; ER = endoplasmic reticulum; TCA = tricarboxylic
acid; AT P = adenosine triphosphate; ADP = adenosine diphosphate. Generated using Biorender,
https://biorender.com/, accessed on 20 September 2023.

In the context of Gq-dependent signaling, both the psychedelic and non-psychedelic
activators of 5-HT2AR stimulate Gq-like G proteins [123]. The process begins with the acti-
vation of PLCγ (Figure 3). This activation subsequently initiates the release of intracellular

https://biorender.com/
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calcium through inositol trisphosphate (IP3) and triggers the activation of protein kinase C
(PKC) via diacylglycerol (DAG). This, in turn, sets off various interconnected downstream
pathways, including but not limited to the ERK, CREB, and mTOR pathways (Figure 3).
Ultimately, these cascading events result in neuronal firing through multiple mechanisms,
such as membrane depolarization, reduced afterhyperpolarization, and decreased spike
frequency adaptation [124–127] (Figure 3). The entry of calcium, along with the activation
of calmodulin-dependent protein kinase II (CaMKII), which interacts with NMDA-type
glutamate receptors and phosphorylates AMPA-type glutamate receptor subunits, leads
to the specific strengthening and structural fortification of synapses, contributing to the
process of long-term potentiation (LTP) that enhances synaptic connections during learning
(Figure 3) [128,129]. Beyond G-protein-coupled pathways, 5-HT2AR agonism can also
engage in β-arrestin signaling via PI3K and AKT (Figure 3) [96,130,131]. Both of these
signaling pathways can contribute to neural plasticity [132,133], and may underlie the
persistent improvements observed in psychiatric disorders.

However, recent research conducted in mice suggests that the therapeutic effects of
psychedelics may be most closely linked to the activation of the BNDF-TrkB signaling
pathway (as discussed in Section 4), rather than the 5-HT2AR [51]. Specifically, several
studies have shown that the “head twitch response” in rodents, which is used as a proxy
for the hallucinogenic effects of psychedelics in humans [95], relies on 5-HT2AR activa-
tion [51,134,135], but that blocking the 5-HT2AR in mice did not prevent induced structural
plasticity changes [51]. However, selectively restoring 5-HT2ARs in cortical pyramidal
neurons was sufficient to rescue hallucinogen-induced head twitching in transgenic mice
lacking 5-HT2Ars [136,137].

4. Classic Psychedelics Facilitate Plasticity via the TrkB-BDNF Signaling Pathway

Neuroplasticity likely plays a pivotal role in the therapeutic effects of psychedelics.
Depression has been linked to reduced neurogenesis and neurotrophic activity [138].
Psychedelics, along with selective serotonin reuptake inhibitors (SSRIs) and certain non-
hallucinogenic psychedelics, induce both structural and functional changes in cortical
neurons, enhancing neurogenesis and thereby contributing to long-term benefits and
improved stress-related behavior [67,139–146].

Similarly, BDNF plays a crucial role in neuronal growth and plasticity, and reduced
levels have been linked to depression [147–149]. Conversely, activities like sleep and
exercise have been shown to elevate BDNF levels [150,151], and greater baseline BDNF
levels correspond to more significant improvements in depressive symptoms associated
with antidepressant treatment [152,153]. Studies have shown that psychedelics, including
LSD, ayahuasca, and psilocybin, can elevate BDNF levels, and this may contribute to their
antidepressant effects [57,154–156].

Recent findings have shown that classic psychedelics like LSD bind to the TrkB recep-
tor (Figure 3) and enhance BDNF signaling [51]. Other antidepressants, such as fluoxetine
and ketamine, also bind to TrkB to facilitate neuroplasticity [157,158]. What is particu-
larly noteworthy is that LSD’s affinity for TrkB has been shown to be up to 1000 times
greater than that of other antidepressants [51,158]. This may contribute to the fast and
potent induction of neuroplasticity and more persistent behavioral effects produced by
psychedelics when compared with other antidepressants [159]. A specific point mutation
in the transmembrane domain of TrkB that disrupts the binding of LSD to TrkB eliminates
the induction of neuroplasticity and long-term plastic responses but has no impact on the
head-twitch response. Furthermore, 5-HT2A receptor antagonists do not effectively stop
the LSD-induced TrkB dimerization and the associated neurotrophic signaling, as well as
the growth of spines and dendrites, along with the antidepressant-like behavioral effects.
Taken together these findings suggest that these effects are separate and distinct from one
another [51].

Psychedelics, like other antidepressants, do not directly activate TrkB receptors but
rather facilitate their effects allosterically by enhancing the actions of extracellular BDNF
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released in active synapses (Figure 3) [51,158]. This initiates a sequence of intracellular
transduction cascades that ultimately facilitate plasticity, as illustrated in Figure 3. Addi-
tionally, psychedelics promote neuroplasticity by increasing the trafficking of AMPA-type
glutamate receptors and elevating BDNF levels [51] (Figure 3) thus promoting the mainte-
nance and strengthening of activity-dependent plasticity in active synapses and fostering
long-term brain modifications [160].

Acute psychedelic administration in rodents has been shown to increase the expres-
sion of immediate early genes associated with plasticity and learning, underscoring the
profound molecular and neuronal effects of these compounds [59,161]. Furthermore, sin-
gle doses of psychedelics can induce lasting epigenetic changes, particularly in enhancer
regions linked to synaptic assembly, persisting for days after their use [59].

However, the antidepressant effects of BDNF and TrkB signaling in promoting plastic-
ity must be understood within the context of the neuronal/circuit and brain level (Figure 1).
Stress triggers specific changes in the adult brain’s reward circuitry, leading to the increased
expression of BDNF and TrkB in the nucleus accumbens (NAc) and ventral tegmental
area (VTA), while reducing expression in other stress-related brain regions like the hip-
pocampus [162]. Repeated exposure to social defeat stress in mice elevates BDNF levels in
the Nac [163], which is associated with heightened susceptibility to mood disorders like
anxiety and depression [164]. Social aversion also involves BDNF secretion and contributes
to neuroadaptation in the mesocorticolimbic system [165,166]. BDNF-containing pathways
from the VTA and PFC to the Nac play a role in this process. Inhibiting TrkB receptors
in the Nac shell prevents the stress-induced inhibition of TrkB in both the Nac core and
shell [167], highlighting the crucial role of TrkB receptors in maintaining homeostasis within
the reward circuitry.

Aversive motivation, such as anxiety and depression, is considered a key factor in
driving substance abuse through negative reinforcement (temporary relief) [168]. A recent
review [166] discusses the role of BDNF in aversive motivation and its differential effect
on the mesolimbic system as compared to the hippocampus and frontal cortex. Reduced
BDNF levels in the hippocampus and prefrontal cortex have been linked to aversive
motivation [166,169], while increased BDNF levels are found in the mesolimbic system
in conditions such as drug addiction [166], epilepsy [170], and neuropathic pain [171].
Therefore, a therapy focusing on both decreasing BDNF levels in the mesolimbic system
and increasing BDNF levels in the hippocampus and frontal cortex could effectively treat
pathological aversive motivation [166,172]. Classical psychedelics seem to fulfill this
dual function. Psilocybin, for example, enhances neural plasticity in the hippocampus
and frontal cortex, aiding in the alleviation of aversive motivation associated with fear
conditioning in animal models, while reducing BDNF-related increased plasticity in the
mesolimbic system [142,144,166]. BDNF triggers a shift in the function of VTA receptors for
gamma-aminobutyric acid type A (GABA-A) on GABA neurons, changing inhibitory effects
to excitatory [173]. Classical hallucinogens, particularly 5-HT2A agonists, are proposed to
revert the drug-dependence associated with substance abuse disorder. This is achieved by
reducing BDNF-induced plasticity in VTA GABAergic neurons, leading to the release of
inhibitory dopaminergic signaling in the mesolimbic system, subsequently alleviating the
negative symptoms associated with aversive motivation [166]. The long-term effects of 5-
HT2A agonists on NMDA-like glutamate receptors are suggested, but further experimental
validation is needed [166,174]. It is worth emphasizing that the exact molecular mechanisms
responsible for this differential impact of the BDNF-TrkB pathway on neuronal plasticity
and stress remain unknown. Both the timing of synaptic activity and the various temporal
phases of synaptic enhancement have been suggested as important factors in determining
the neurotrophin dependence of plasticity in the hippocampus [175]. Additionally, the
regulation of TrkB cell surface expression and trafficking has been proposed as mechanisms
that can alter the responsiveness of target cells to BDNF, potentially leading to abnormal
synaptic plasticity and disrupted network communication. These factors may be involved
in various neuropsychiatric diseases [176].
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As previously discussed, there has been a greater focus on understanding the mecha-
nisms related to receptor localization in various brain regions and the effects of psychedelics,
particularly in the context of 5-HT2A receptors. However, there are still gaps in our knowl-
edge in this area. Psychedelics activate 5-HT2A receptors, which are found post-synaptically
on layer 5 and 6 pyramidal neurons and GABAergic interneurons [106]. As mentioned
previously, inhibitory GABAergic interneurons in the cortex and subcortical structures
also express 5-HT2A receptors [109]. The overall effect appears to be the excitation of
layer 5 pyramidal neurons and an increase in extracellular glutamate levels, leading to
greater stimulation of AMPA receptors [106,177]. In vivo experiments, DOI, for example,
demonstrated a pronounced overall excitatory effect on pyramidal neurons in the rat
prefrontal cortex, with some inhibition of GABAergic interneurons [178]. In a different
study, lower doses of DOI resulted in the activation of neuronal populations in the rat
orbitofrontal cortex and anterior cingulate cortex, while higher doses tended to suppress
activity in these regions, possibly influenced by receptor density [115,179]. Hence, it seems
that psychedelics can have different modulatory effects across cortical regions, depending
on factors such as dosage, the specific drug used, and the density of 5-HT2A receptors in
various neuronal populations [106].

Additionally, the precise molecular pathways that may modify neuroplasticity after 5-
HT2A receptor stimulation remain incompletely understood (Figure 3). A prevailing theory
suggests that AMPA receptor activation initiates a positive feedback loop, with enhanced
AMPA receptor activity leading to increased BDNF secretion, which in turn stimulates
TrkB receptors and mTOR [67]. This cascade of events sustains BDNF production and
prolonged AMPA and mTOR activation, which seems necessary for the enhanced dendritic
growth observed after psychedelic stimulation [180]. These effects likely occur in synapses
and circuits expressing 5-HT2A receptors since BDNF primarily acts locally and does not
diffuse extensively after release [181]. Hence, this theory proposes that the neuroplasticity
linked to TrkB-BDNF signaling arises as a consequence of downstream effects resulting
from 5-HT2A receptor signaling and TrkB activation. This contradicts the findings we have
discussed [51,158], suggesting that TrkB signaling represents an independent and distinct
mechanism of plasticity. Therefore, further research is required to address these aspects.

5. What Do 5-HT2A and TrkB Pathways Reveal about the Role of Subjective
Experience in Serotonergic Psychedelic Therapy?

The acute hallucinogenic effects of psychedelics have limited their widespread clin-
ical use, necessitating specialized medical supervision in controlled clinical settings for
extended sessions [182–184].

Concerns about psychedelics inducing psychosis can be traced back to the time when
LSD was banned, with a focus on instances of “acid casualties” that significantly influenced
the way society viewed psychedelics. It is worth noting that such cases are infrequent,
especially in clinical applications [185]. However, in individuals who have a genetic
predisposition, which can be indicated by a family history of psychiatric disorders like
schizophrenia or bipolar disorder, there is a potential risk that psychedelics could trigger
psychotic episodes [186–191]. This risk is likely associated with alterations at the molecular
level in brain regions responsible for perception, cognition, and mood regulation. As a
precaution, individuals with a family history of schizophrenia or bipolar disorder, who
may have a genetic susceptibility to psychotic illnesses, are generally excluded from clinical
treatments involving psychedelics [191]. With rigorous screening procedures in place, there
have been no reported incidents of psychotic episodes in modern clinical trials involving
psychedelics [185]. Zeifmann and colleagues [192] conducted a systematic review on classic
psychedelics and suicide risk. Their findings indicate that psychedelic therapy can poten-
tially decrease suicidality in specific clinical psychiatric groups, while classic psychedelic
use might offer some protection against suicidal tendencies [192]. However, unsupervised
and uncontrolled psychedelic use can, in rare instances, lead to fatal outcomes, including
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suicide. The authors emphasize that their conclusions are based on a limited dataset, mainly
comprising case studies and small retrospective reports [185,192].

Another risk associated with the hallucinogenic effects of psychedelics is the occur-
rence of flashbacks and Hallucinogen Persisting Perception Disorder (HPPD), in which
certain individuals may experience unwanted and distressing visual disturbances that often
resemble the effects of psychedelics, even after the drug has cleared from their system [193].
The molecular mechanisms behind HPPD are not fully understood, but it may involve
alterations in visual processing and neurotransmitter systems. The DSM-V reports a broad
range of prevalence rates for Hallucinogen Persisting Perception Disorder (HPPD), with
figures as high as 4.2% based on an online questionnaire [193], while other studies have
reported rates as low as 1 in 50,000 [194]. Despite involving thousands of participants in
psychedelic research and clinical trials spanning the past two decades, there have been
no documented instances of HPPD [44,185,195]. Clinical settings report lower HPPD in-
cidence, likely due to screening and preparation [191]. While some studies indicate no
identifiable risk factors [196], others suggest a link between HPPD and anxiety or panic
reactions during the initial experience, potentially resembling a trauma response or health
anxiety [197].The activation of serotonin 5-HT2A receptors, along with the presence of
oxidative stress and the occurrence of apoptotic cell death, has been proposed as potential
mechanisms that might underlie neurotoxicity resulting from the use of novel psychoactive
substances (NPS) with psychedelic properties. Nevertheless, it remains uncertain to what
degree these mechanisms actually play a role in the adverse effects observed in humans
following the consumption of stimulants and psychedelics NPS [198].

Due to the hallucinogenic effects, individuals with a family history of bipolar disor-
der or schizophrenia have been excluded from participating in clinical trials involving
psychedelics for depression, despite the potential therapeutic benefits that could be valuable
for these populations. [183,184,191].

However, recent findings suggest that the TrkB-dependent effects of psychedelics on
plasticity may be separated from their hallucinogenic-like effects mediated by 5-HT2A
receptors [51,199,200]. This suggests the potential to discover compounds or treatment
combinations that retain some of the antidepressant effects of psychedelics without the
hallucinogenic effects [62,201]. Some of these compounds include isoDMT [202], taber-
nanthalog [199], AAZ-A-154 [203], and 2-bromo-LSD [204], achieved by modifying the
structures of known hallucinogenic compounds. The availability of high-resolution struc-
tures of 5-HT receptors in complex with psychedelics promises to expedite the search for
novel psychedelic and non-hallucinogenic 5-HT2A agonists [62,94,205]. The emerging data
on the therapeutic role of psychedelic binding to TrkB receptors, enhancing neuroplasticity,
will also drive computational analysis in this new direction.

A significant question is whether the psychedelic experience is an essential aspect
of the therapeutic effect of serotonergic psychedelics [206,207]. One hypothesis is that
the psychedelic experience is not strictly necessary for therapeutic effects [208]. This was
indicated by a recent study in mice, which showed TrkB binding independent of 5-HT2AR
activation [51], and is also consistent with the reports of microdosers who frequently claim
clinically relevant benefits without marked subjective effects [209]. Another hypothesis is
that hallucinogenic experiences grant access to underlying psychological and emotional
phenomena that can be addressed, modified, and reinforced through psychotherapy [210].
Supporting this hypothesis, the reduction in prefrontal 5-HT2AR activity resulting from
classical hallucinogens could explain certain aspects of their impact on depression and
anxiety [211]. This suggests that the alterations in 5-HT2AR activity associated with
hallucinogenic effects may play a crucial role in the therapeutic aspects of these substances.

Importantly, species differences can influence the properties of 5-HT2ARs, and it may
turn out that animal models are unable to tell us much about the importance of psychedelic
experiences for clinical outcomes in humans [212]. At present, there is insufficient evidence
to conclusively support either hypothesis, and further research is needed to empirically
address this question [207].
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6. Glutamate Signaling: A Shared Regulator of Neuroplasticity in Hallucinogens and
Dissociative Anesthetics

Glutamate signaling deficiencies are a significant characteristic of major depressive
disorders [213]. Psychedelics promote neuroplasticity by increasing extracellular glutamate
levels in the prefrontal cortex [177,214,215] and triggering the release of neurotrophic fac-
tors like BDNF that enhance neural plasticity (Figure 3) [56,57,155]. This process involves
the activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and activation
of metabotropic glutamate receptors (mGluR), including mGluR2 and mGluR3, which
influence G-protein coupling and downstream signaling pathways linked to rapid antide-
pressant effects (Figure 3) [129,216–219]. Classic psychedelics induce glutamate release
in the medial prefrontal cortex, leading to the sustained activation of AMPA receptors
and subsequent BDNF release, which in turn activates mTOR signaling and upregulates
neuroplasticity-related genes and synaptic protein synthesis, ultimately enhancing social be-
havior in mice (Figure 3) [22,52,220,221]. These effects can be blocked by specific 5-HT2AR
antagonists, AMPAR antagonists, mGluR2 positive allosteric modulators, and NMDAR
antagonists [179,222–224]. On the other hand, DOI and LSD elevate glutamate and BDNF
levels and enhance NMDAR-mediated transmission [177,215,225]. These findings sug-
gest that psychedelics may promote neuroplasticity through glutamate-driven AMPAR
activation, with potential therapeutic implications for mood disorders and stress-related
learning [226,227].

Dissociative anesthetics like ketamine block NMDARs, leading to increased glutamate
release in the medial prefrontal cortex (Figure 2) [214,228–231]. The elevated extracel-
lular glutamate levels contribute to the psychotropic effects of ketamine and PCP, and
these effects can be influenced by AMPAR antagonists or mGluR2 and mGluR3 ago-
nists [229,232]. Similar to classic psychedelics, ketamine also promotes neuronal struc-
tural remodeling and plasticity, suggesting a common mechanism for neuroplasticity
shared between them [52,233,234]. Both classes of drugs stimulate AMPARs by increas-
ing extracellular glutamate levels and elevate BDNF levels in brain areas implicated in
depression [22,145,220,222,224,235–238], facilitating the adaptive rewiring of pathological
neurocircuitry and explaining their sustained therapeutic effects [52].

7. Additional Receptors and Pathways Contributing to the Mechanisms of Action
of Psychedelics

Psychedelics have a complex pharmacology, interacting with various serotonin 5-HT
receptors, such as 5-HT1, 5-HT4, 5-HT5, 5-HT6, and 5-HT7, in addition to the well-known
high affinity for 5-HT2 receptors [239,240]. LSD, for example, has a high affinity for multiple
human 5-HT receptors, as well as D1, D2, D3, and D4 dopamine and α1 and α2-adrenergic
receptors [94,241,242]. Ergolines also exhibit significant intrinsic activity at both dopamine
D2 receptors and α-adrenergic receptors [243]. Psilocin also strongly activates several 5-HT
receptors including 5-HT1D, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT5, 5-HT6, and 5-HT7 [244,245],
histamine-1, α2A, and α2B adrenergic receptors, and dopamine D3 receptors [50].

Some psychedelics like tryptamines can bind to 5-HT1A receptors and decrease neu-
ronal excitability [127,246]. LSD can also impact 5-HT1A receptors by desensitizing them,
increasing serotonin release [247]. Additionally, regions abundant in 5-HT1A receptors,
especially limbic areas, have shown decreased signal intensity and inherent connectivity
in whole-brain modeling studies [100]. The distribution and abundance of these receptor
subtypes determine how psychedelics affect neuronal activity [248].

The dopaminergic system (Figure 2) becomes active when exposed to psilocybin,
resulting in increased dopamine levels that correlate with feelings of euphoria and deper-
sonalization [249]. Psilocybin does not directly interact with dopamine receptors; instead,
it may elevate striatal dopamine levels through the activation of 5-HT1A receptors [250].
However, when dopamine D2 receptors are blocked with haloperidol, these effects are only
moderately diminished and selectively impact positive derealization, with no influence
on visual hallucinations or working memory, suggesting a relatively modest involvement
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of the dopaminergic system in these psilocybin responses [102]. Unlike psilocybin, LSD
does exhibit significant intrinsic activity at dopamine D2 receptors [50,240], which is char-
acterized by a phased response, initially activating 5-HT2ARs and later D2 receptors [251].
Recent findings suggest that the subjective effects of 30 mg psilocybin and 100 or 200 mg
of LSD, despite their varied pharmacological profiles and receptor affinities, cannot be
reliably distinguished, challenging the idea of a precise link between receptor activation
and phenomenological experiences [57].

Lately, there has been growing interest in the potential use of psychedelics, which
have a broad impact on 5-HT2 receptors, in the treatment of Substance Use Disorder (SUD),
with a particular focus on the involvement of the 5-HT2C receptor [252].

Another receptor that may contribute to the therapeutic effects of psychedelics is
the trace amine-associated receptor (TAAR), as psychedelics activate the TAAR1 receptor,
subsequently exerting an inhibitory influence on dopaminergic activity [253,254].

The Sigma-1 receptor (Sig-1R) is a small integral membrane protein that localizes at the
interface of the endoplasmic reticulum (ER) and mitochondria, known as the mitochondria-
associated ER membrane (MAM) (Figure 3) [255,256]. These contact sites play a pivotal
role in various cellular processes, including calcium regulation, lipid metabolism, and
apoptosis [256]. Consequently, Sig-1R has been implicated in promoting cell survival,
neuroprotection, neuroplasticity, and neuroimmunomodulation [257].

Recent studies exploring the interactions between psychedelics and Sig-1Rs have
opened up a new avenue of research regarding their potential impact on mitochondrial
function and the associated MAMs [258]. Much like 5-HTRs, Sig-1Rs can influence the
activity of Ca2+ channels, either enhancing or inhibiting them, consequently regulating
intracellular Ca2+ levels, which can affect lipid transfer between the ER and mitochon-
dria [259].

The chaperone function of the Sig-1R is essential for regulating various cellular pro-
cesses [260]. It interacts with proteins within the endoplasmic reticulum, ensuring their
correct folding and appropriate functioning. This role is crucial for maintaining neuronal
homeostasis and protecting against cellular stress [256,257,260] and may extend beyond the
central nervous system to encompass a broader role in cellular protective mechanisms [261].

DMT has been identified as a natural, endogenous ligand for Sig-1R [257,262]. This
interaction can influence mitochondrial energy production and respiration rates. At its
endogenous affinity concentrations (14 µM), DMT binds to Sig-1R, leading to the dissocia-
tion of Sig-1R from the immunoglobulin protein (BiP). This dissociation enables Sig-1R to
function as a molecular chaperone for IP3R [263]. This leads to enhanced Ca2+ signaling
and a substantial increase in ATP production (Figure 3) [264]. However, at higher concen-
trations (100 µM), DMT induces the translocation of Sig-1Rs from the MAM to the plasma
membrane, leading to the inhibition of ion channels [262,263,265] (Figure 3). In both human
in vitro and animal in vivo studies, DMT has demonstrated potent neuroprotective and
neurogenerative effects via Sig1R [266,267].

Furthermore, psychedelics binding to Sig-1R may have an impact on the production of
reactive oxygen species (ROS), which are natural byproducts of mitochondrial metabolism.
During glutamate excitotoxicity, excessive stimulation of glutamate receptors can lead to
uncontrolled propagation of action potentials through neurons, triggering the influx of
Ca2+ ions into the cytoplasm. This influx may induce mitochondrial respiration and the
release of ROS [268]. Sig1R agonists such as dimemorfan and dipentylammonium have
been shown to mediate neuroprotection against glutamate excitotoxicity [269,270], and a
reduction in glutamate toxicity in vivo has also been suggested for DMT [271,272].

Research into how psychedelics affect Sig-1R and their consequences for mitochondrial
function and MAMs is a promising but emerging field, with a need for further investigation
to uncover precise mechanisms and potential therapeutic applications.
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8. The Potential of Psychedelics as Anti-Inflammatory Agents

Psychedelics have shown promise in reducing inflammatory markers associated with
depression, addiction, and anxiety [58,273,274]. They can inhibit cytokines and several
studies have reported decreases in inflammatory markers in human cells following the
administration of various psychedelics [274–284]. Furthermore, psychedelics trigger a
biochemical stress response, releasing catecholamines and glucocorticoids, and this, coun-
terintuitively, may contribute to their transformative effects [247,285–287]. Although the
mechanism underlying this response is not fully understood, it may involve direct actions
on 5-HT2ARs in the hypothalamus and microglia [288–291]. Most immune cells possess
5-HT receptors, leading to the hypothesis that serotonergic psychedelics affect immunomod-
ulatory agents by activating 5-HT2AR agonism [292]. An alternative hypothesis suggests
that the altered state of consciousness induced by psychedelics may activate the acute
stress response, potentially contributing to their neuroplastic effects, although the role of
the stressful aspects of the psychedelic experience in therapeutic benefits is a subject of
debate [293,294].

Furthermore, the Sig-1R’s expression is not limited to specific regions within the CNS,
but it is also found in immune cells [295]. Sig-1R ligands have been shown to exhibit
potent immunoregulatory properties as evidenced by their ability to elevate the secretion
of the anti-inflammatory cytokine IL-10 [261,296–299], by regulating the activation of the
transcription factors nuclear factor kappa B (NF-кB) and several MAPKs [269].

Although research into the anti-inflammatory effects of psychedelics is at an early
stage, this line of research shows potential for treating neurological disorders marked by
chronic immune activity such as Alzheimer’s and Parkinson’s, as well as autoimmune-
related conditions [36].

9. Conclusions

The cellular neurobiology of psychedelics is a complex and multifaceted field of study
that holds great promise for understanding the mechanisms underlying their therapeutic
effects. These substances engage intricate molecular/cellular, circuit/network, and overall
brain-level mechanisms, impacting a wide range of neurotransmitter systems, receptors,
and signaling pathways. This comprehensive review has shed light on the mechanisms
underlying the action of psychedelics, particularly focusing on their activity on 5-HT2A,
TrkB, and Sig-1A receptors. The activation of 5-HT2A receptors, while central to the
psychedelic experience, is not be the sole driver of their therapeutic effects. Recent research
suggests that the TrkB-BDNF signaling pathway may play a pivotal role, particularly in
promoting neuroplasticity, which is essential for treating conditions like depression. This
delineation between the hallucinogenic and non-hallucinogenic effects of psychedelics
opens avenues for developing compounds with antidepressant properties and reduced
hallucinogenic potential. Moreover, the interactions between psychedelics and Sig-1Rs
have unveiled a new avenue of research regarding their impact on mitochondrial function,
neuroprotection, and neurogeneration.

Overall, while our understanding of the mechanisms of psychedelics has grown
significantly, there is still much research needed to unlock the full potential of these com-
pounds for therapeutic purposes. Further investigation into their precise mechanisms
and potential clinical applications is essential in the pursuit of new treatments for various
neuropsychiatric and neuroinflammatory disorders.
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